
M
ad

ri
d

D
ic

ie
m

br
e

20
05

Javier García de Jalón, José Ignacio Rodríguez, Jesús Vidal

Escuela Técnica Superior
de Ingenieros Industriales
Universidad Politécnica de Madrid

Aprenda Matlab 7.0
como si estuviera en primero

Aprenda Matlab 7.0 como
si estuviera en primero

Javier García de Jalón
José Ignacio Rodríguez
Jesús Vidal

Índice página i

ÍNDICE
1. PRÓLOGO 1
2. INTRODUCCIÓN 2

2.1. Acerca de este manual 2
2.2. Novedades en este manual 2
2.3. El programa MATLAB 3
2.4. Uso del Help 7
2.5. El entorno de trabajo de MATLAB 9

2.5.1. El Escritorio de Matlab (Matlab Desktop) 9
2.5.2. Command Window 11
2.5.3. Command History Browser 11
2.5.4. Current Directory Browser 12
2.5.5. Path de MATLAB: establecer el camino de búsqueda (search path) 12
2.5.6. Workspace Browser y Array Editor 14
2.5.7. El Editor/Debugger 16
2.5.8. El profiler 18

2.6. Preferencias: Formatos de salida y de otras opciones de MATLAB 18
2.7. Ficheros matlabrc.m, startup.m y finish.m 19
2.8. Guardar variables y estados de una sesión: Comandos save y load 20
2.9. Guardar sesión y copiar salidas: Comando diary 21
2.10. Líneas de comentarios 21
2.11. Medida de tiempos y de esfuerzo de cálculo 21

3. OPERACIONES CON MATRICES Y VECTORES 23
3.1. Definición de matrices desde teclado 23
3.2. Operaciones con matrices 25

3.2.1. Operadores aritméticos 25
3.2.2. Operadores para la resolución de sistemas de ecuaciones lineales 26
3.2.3. Operadores elemento a elemento 27

3.3. Tipos de datos 28
3.3.1. Números reales de doble precisión 28
3.3.2. Otros tipos de variables: integer, float y logical 29
3.3.3. Números complejos: Función complex 30
3.3.4. Cadenas de caracteres 31

3.4. Variables y expresiones matriciales 31
3.5. Otras formas de definir matrices 32

3.5.1. Tipos de matrices predefinidos 32
3.5.2. Formación de una matriz a partir de otras 33
3.5.3. Direccionamiento de vectores y matrices a partir de vectores 34
3.5.4. Operador dos puntos (:) 35
3.5.5. Matriz vacía A[]. Borrado de filas o columnas 37
3.5.6. Definición de vectores y matrices a partir de un fichero 38
3.5.7. Definición de vectores y matrices mediante funciones y declaraciones 38

3.6. Operadores relacionales 38
3.7. Operadores lógicos 39

4. FUNCIONES DE LIBRERÍA 40
4.1. Características generales de las funciones de MATLAB 40
4.2. Equivalencia entre comandos y funciones 41
4.3. Funciones matemáticas elementales que operan de modo escalar 42
4.4. Funciones que actúan sobre vectores 43
4.5. Funciones que actúan sobre matrices 43

4.5.1. Funciones matriciales elementales: 43
4.5.2. Funciones matriciales especiales 43
4.5.3. Funciones de factorización y/o descomposición matricial 44
4.5.4. Función linsolve() 46

4.6. Más sobre operadores relacionales con vectores y matrices 46
4.7. Otras funciones que actúan sobre vectores y matrices 48
4.8. Determinación de la fecha y la hora 49

Aprenda Matlab 7.0 como si estuviera en Primero página ii

4.9. Funciones para cálculos con polinomios 49
5. OTROS TIPOS DE DATOS DE MATLAB 51

5.1. Cadenas de caracteres 51
5.2. Hipermatrices (arrays de más de dos dimensiones) 53

5.2.1. Definición de hipermatrices 53
5.2.2. Funciones que trabajan con hipermatrices 53

5.3. Estructuras 54
5.3.1. Creación de estructuras 54
5.3.2. Funciones para operar con estructuras 55

5.4. Vectores o matrices de celdas (Cell Arrays) 56
5.4.1. Creación de vectores y matrices de celdas 56
5.4.2. Funciones para trabajar con vectores y matrices de celdas 57
5.4.3. Conversión entre estructuras y vectores de celdas 57

5.5. Matrices dispersas (sparse) 57
5.5.1. Funciones para crear matrices dispersas (directorio sparfun) 58
5.5.2. Operaciones con matrices dispersas 59
5.5.3. Operaciones de álgebra lineal con matrices dispersas 60
5.5.4. Reglas generales para operar con matrices dispersas 61
5.5.5. Permutaciones de filas y/o columnas en matrices sparse 61

5.6. Clases y objetos 62
6. PROGRAMACIÓN DE MATLAB 63

6.1. Bifurcaciones y bucles 63
6.1.1. Sentencia if 64
6.1.2. Sentencia switch 64
6.1.3. Sentencia for 65
6.1.4. Sentencia while 66
6.1.5. Sentencia break 66
6.1.6. Sentencia continue 66
6.1.7. Sentencias try...catch...end 66

6.2. Lectura y escritura interactiva de variables 66
6.2.1. función input 66
6.2.2. función disp 67

6.3. Ficheros *.m 67
6.3.1. Ficheros de comandos (Scripts) 68
6.3.2. Definición de funciones 68
6.3.3. Sentencia return 69
6.3.4. Funciones con número variable de argumentos 69
6.3.5. Help para las funciones de usuario 70
6.3.6. Help de directorios 71
6.3.7. Sub-funciones 71
6.3.8. Funciones privadas 72
6.3.9. Funciones *.p 72
6.3.10. Variables persistentes 72
6.3.11. Variables globales 72

6.4. Referencias de función (function handles) 72
6.4.1. Creación de referencias de función 73
6.4.2. Evaluación de funciones mediante referencias 74
6.4.3. Información contenida por una referencia de función. Funciones sobrecargadas 75
6.4.4. Otros aspectos de las referencias de función 76
6.4.5. Utilidad de las referencias de función 76
6.4.6. Funciones inline 77
6.4.7. Funciones anónimas 77
6.4.8. Funciones anidadadas 77

6.5. Entrada y salida de datos 79
6.5.1. Importar datos de otras aplicaciones 79
6.5.2. Exportar datos a otras aplicaciones 79

6.6. Lectura y escritura de ficheros 80

Índice página iii

6.6.1. Funciones fopen y fclose 80
6.6.2. Funciones fscanf, sscanf, fprintf y sprintf 80
6.6.3. Funciones fread y fwrite 81
6.6.4. Ficheros de acceso directo 81

6.7. Recomendaciones generales de programación 82
6.8. Acelerador JIT (Just In Time) en MATLAB 82
6.9. Llamada a comandos del sistema operativo y a otras funciones externas 83
6.10. Funciones de función 83

6.10.1. Integración numérica de funciones 84
6.10.2. Ecuaciones no lineales y optimización 84
6.10.3. Integración numérica de ecuaciones diferenciales ordinarias 86
6.10.4. Las funciones eval, evalc, feval y evalin 94

6.11. Distribución del esfuerzo de cálculo: Profiler 95
7. INTERFACES DE MATLAB CON OTROS LENGUAJES 98

7.1. Interfaces de MATLAB con DLLs genéricas 98
7.1.1. Introducción 98
7.1.2. Cargar y liberar las librerías de memoria 98
7.1.3. Conseguir información acerca de la librería 99
7.1.4. Llamada a las funciones de una librería 99
7.1.5. Conversión de datos 99
7.1.6. Paso de estructuras como argumentos 100
7.1.7. Paso de argumentos por referencia 101

7.2. Llamar desde MATLAB funciones programadas en C o Fortran 102
7.2.1. Introducción a los ficheros MEX 102
7.2.2. Construcción de ficheros MEX 102
7.2.3. Creación de ficheros MEX en C 103
7.2.4. Ejemplo de función MEX programada en C 104
7.2.5. Depurar ficheros MEX en C en Windows 106
7.2.6. Depurar ficheros MEX en C en UNIX 107

8. GRÁFICOS BIDIMENSIONALES 108
8.1. Funciones gráficas 2D elementales 108

8.1.1. Función plot 109
8.1.2. Estilos de línea y marcadores en la función plot 111
8.1.3. Añadir líneas a un gráfico ya existente 111
8.1.4. Comando subplot 112
8.1.5. Control de los ejes: función axis() 112
8.1.6. Función line() 113
8.1.7. Función findobj() 113

8.2. Control de ventanas gráficas: Función figure 114
8.3. Otras funciones gráficas 2-D 115

8.3.1. Función fplot 115
8.3.2. Función fill para polígonos 116
8.3.3. Dibujo simplificado de funciones: Funciones ezplot() y ezpolar() 116

8.4. Entrada de puntos con el ratón 117
8.5. Preparación de películas o "movies" 117
8.6. Impresión de las figuras en impresora láser 118
8.7. Las ventanas gráficas de MATLAB 119

9. GRÁFICOS TRIDIMENSIONALES 121
9.1. Tipos de funciones gráficas tridimensionales 121

9.1.1. Dibujo simplificado de funciones 3-D: Funciones ezplot3(), ezsurf(), etc. 122
9.1.2. Dibujo de líneas: función plot3 122
9.1.3. Dibujo de mallados: Funciones meshgrid, mesh y surf 123
9.1.4. Dibujo de líneas de contorno: funciones contour y contour3 124

9.2. Utilización del color en gráficos 3-D 124

Aprenda Matlab 7.0 como si estuviera en Primero página iv

9.2.1. Mapas de colores 125
9.2.2. Imágenes y gráficos en pseudocolor. Función caxis 125
9.2.3. Dibujo de superficies faceteadas 126
9.2.4. Otras formas de las funciones mesh y surf 126
9.2.5. Formas paramétricas de las funciones mesh, surf y pcolor 127
9.2.6. Otras funciones gráficas 3D 127
9.2.7. Elementos generales: ejes, puntos de vista, líneas ocultas, ... 128

Prólogo página 1

1. PRÓLOGO
La colección de manuales "Aprenda Informática como si estuviera en Primero" nació en la Escuela
Superior de Ingenieros Industriales de San Sebastián (Universidad de Navarra) a lo largo de la dé-
cada de 1990, como consecuencia de la impartición de las asignaturas Informática 1 e Informática
2, introducidas en el Plan de Estudios de 1993.

El objetivo de esta colección era facilitar a los alumnos de las asignaturas citadas unos apuntes bre-
ves y sencillos, fáciles de leer, que en unos casos ayudasen en el uso de las aplicaciones informáti-
cas más habituales para un ingeniero industrial y en otros sirvieran de introducción a distintos len-
guajes de programación.

Así pues, los destinatarios directos de estos apuntes eran los alumnos de la Escuela de Ingenieros
Industriales de San Sebastián. Para facilitarles su uso, además de estar a la venta en el Servicio de
Reprografía, se introdujeron versiones "online" en formato PDF (Portable Document Format, de
Adobe), accesibles a través de las páginas Web de las mencionadas asignaturas. Los alumnos de
cursos superiores y algunos profesores los utilizaban también para actualizar sus conocimientos
cuando se instalaban nuevas versiones de las correspondientes aplicaciones.

Sin haberlos anunciado en ningún índice o buscador, al cabo de cierto tiempo se observó que eran
accedidos con una frecuencia creciente desde el exterior de la Escuela, a través de Internet. Poco a
poco empezaron a llegar de todo el mundo de habla hispana correos electrónicos que se interesaban
por nuevos títulos, daban noticia de erratas, solicitaban permiso para utilizarlos en la docencia de
otras instituciones o simplemente daban las gracias por haberlos puesto en Internet.

A la vista de estos efectos "no buscados", se estableció una página Web dedicada especialmente a
esta colección y se anunció en los tres o cuatro portales más importantes de lengua española, lo que
hizo que en poco tiempo se multiplicaran los accesos.

A partir del curso 2000-01 el autor principal y creador de la colección se trasladó a la Escuela Téc-
nica Superior de Ingenieros Industriales de la Universidad Politécnica de Madrid, de la que es ac-
tualmente catedrático en el área de Matemática Aplicada. El principal punto de entrada a la colec-
ción se encuentra ahora en la dirección http://www.tayuda.com.. El número de accesos ha seguido
aumentando, llegando casi a 1.000.000 de ficheros en 2004.

Aunque el mantenimiento de esta colección constituya un trabajo notable y no se saque ningún ren-
dimiento económico de ella, da particular alegría el realizar un trabajo que tantos miles de personas
consideran útil. El mantenimiento de estos manuales va a ser más difícil en los próximos años, en
gran parte por el cambio en la actividad docente de su director o coordinador. Por eso serán bienve-
nidas todas aquellas ofertas de ayuda para mantener y crear esta colección de "Open Tutorials".

Madrid, diciembre de 2005.

Javier García de Jalón de la Fuente
(javier.garciadejalon@upm.es)

Aprenda Matlab 7.0 como si estuviera en Primero página 2

2. INTRODUCCIÓN

2.1. Acerca de este manual
Las primeras versiones de este manual estuvieron dirigidas a los alumnos de Informática 1 en la
Escuela Superior de Ingenieros Industriales de San Sebastián (Universidad de Navarra). Esta asig-
natura se cursa en el primer semestre de la carrera y el aprendizaje de MATLAB constituía la pri-
mera parte de la asignatura. Se trataba pues de un manual introductorio de una aplicación que, para
muchos alumnos, iba a constituir su primer contacto "profesional" con los ordenadores y/o con la
programación.

Desde el curso 2000-2001, este manual se ha adaptado a la asignatura de Matemáticas de la Espe-
cialidad (Mecánica-Máquinas) (Plan 1976) y a las prácticas de Álgebra (Plan 2000) en la Escuela
Técnica Superior de Ingenieros Industriales de la Universidad Politécnica de Madrid. A partir del
curso 2001-02 este manual se pensó subdivir en dos: "Aprenda MATLAB 7.0 como si estuviera en
Primero" y "Aprenda MATLAB 7.0 como si estuviera en Segundo", este último de carácter más
avanzado1. En la práctica, hasta la fecha, este segundo manual nunca ha llegado a ver la luz.

Por encima de las asignaturas citadas, este manual puede ser útil a un público mucho más amplio,
que incluye a alumnos de cursos superiores de las Escuelas de Ingeniería Industrial, a alumnos de
Tercer Ciclo y a profesores que quieran conocer más de cerca las posibilidades que tendría MA-
TLAB en sus asignaturas. MATLAB es una de las aplicaciones más útiles que existen para poner a
punto métodos numéricos en distintas asignaturas de ingeniería. Por ser una herramienta de alto
nivel, el desarrollo de programas numéricos con MATLAB puede requerir hasta un orden de magni-
tud menos de esfuerzo que con lenguajes de programación convencionales, como Fortran, Pascal,
C/C++, Java o Visual Basic.

Se ha pretendido llegar a un equilibrio entre el detalle de las explicaciones, la amplitud de temas
tratados y el número de páginas. En algunos casos, junto con las instrucciones introducidas por el
usuario se incluye la salida de MATLAB; en otros casos no se incluye dicha salida, pero se espera
que el lector disponga de un PC con MATLAB y vaya introduciendo esas instrucciones a la vez que
avanza en estas páginas. En muchas ocasiones se anima al lector interesado a ampliar el tema con la
ayuda del programa (toda la documentación de MATLAB está disponible on-line a través del
Help). En cualquier caso recuérdese que la informática moderna, más que en “saber cómo hacer
algo” consiste en “saber averiguar cómo hacerlo” en pocos segundos.

2.2. Novedades en este manual
Como corresponde a la nuava versión de MATLAB que describe (la versión 7.0), este manual con-
prende una completa revisión del anterior, correspondiente a la versión 6.5. En este sentido, por
ejemplo, todas las figuras del manual han sido renovadas, pues también el aspecto de la nueva ver-
sión de MATLAB es diferente, más en unos aspectos que en otros.

Además de la citada revisión general, en este nuevo manual se hace referencia por primera vez a
ciertas novedades introducidas tanto en la versión 6.5 como en la 7.0. Las más adiciones más im-
portantes son las siguientes:

1. Ayuda y entorno de desarrollo mejorados (Apartado 2.5, a partir de la página 9).

2. Mejoras en el debugger, que permiten establecer puntos de parada de ejecución condicional
(Apartado 2.5.7, página 16).

1 En realidad, el manual "Aprenda Matlab como si estuviera en Segundo" no ha llegado a ver la luz (verano de 2004).

Es un viejo proyecto pendiente de disponer de tiempo para terminar su edición. Si por fin se publica, aparecerá de
inmediato en http://www.tayuda.com/ayudainf

Capítulo 2: Introducción página 3

3. La posibilidad de comentar bloques de sentencias (Apartado 2.10, página 21).

4. Otros tipos de variables distintos de double. Aunque MATLAB trabaja por defecto con varia-
bles double, existe también la posibilidad de definir variables enteras de distinto rango, así co-
mo variables reales de simple precisión y variables lógicas (Apartado 3.3.2, página 29).

5. Función linsolve, que permite optimizar la resolución de sistemas de ecuaciones lineales, lo que
es quizás la tarea más utilizada de MATLAB (Apartado 4.5.4, página 46).

6. Nuevos tipos de funciones, en concreto las funciones inline (Apartado 6.4.6, página 77), las
funciones anónimas (Apartado 6.4.7, página 77), y las funciones anidadas (Apartado 6.4.8, pá-
gina 77).

7. Ejecución de funciuones programadas en C como librerías externas o ficheros MEX (Capítulo 7,
página 98).

8. Las funciones de dibujo simplificadas en 2-D (ezplot y ezpolar, Apartado 8.3.3, página 116) y
en 3-D (ezplot3 y ezsurf, Apartado 9.1.1, página 122).

9. Nuevas ventanas gráficas, con muchas más posibilidades de control interactivo de las propieda-
des (Apartado 8.7, página 119).

2.3. El programa MATLAB
MATLAB es el nombre abreviado de “MATrix LABoratory”. MATLAB es un programa
para realizar cálculos numéricos con vectores y matrices. Como caso particular puede
también trabajar con números escalares −tanto reales como complejos−, con cadenas de
caracteres y con otras estructuras de información más complejas. Una de las capacidades más atrac-
tivas es la de realizar una amplia variedad de gráficos en dos y tres dimensiones. MATLAB tiene
también un lenguaje de programación propio. Este manual hace referencia a la versión 7.0 de este
programa (también llamada release 14), aparecida a mediados de 2004.

MATLAB es un gran programa de cálculo técnico y científico. Para ciertas operaciones es muy
rápido, cuando puede ejecutar sus funciones en código nativo con los tamaños más adecuados para
aprovechar sus capacidades de vectorización. En otras aplicaciones resulta bastante más lento que el
código equivalente desarrollado en C/C++ o Fortran. En la versión 6.5, MATLAB incorporó un
acelerador JIT (Just In Time), que mejoraba significativamente la velocidad de ejecución de los
ficheros *.m en ciertas circunstancias, por ejemplo cuando no se hacen llamadas a otros ficheros
*.m, no se utilizan estructuras y clases, etc. Aunque limitado en ese momento, cuando era aplicable
mejoraba sensiblemente la velocidad, haciendo innecesarias ciertas técnicas utilizadas en versiones
anteriores como la vectorización de los algoritmos. En cualquier caso, el lenguaje de programación
de MATLAB siempre es una magnífica herramienta de alto nivel para desarrollar aplicaciones téc-
nicas, fácil de utilizar y que, como ya se ha dicho, aumenta significativamente la productividad de
los programadores respecto a otros entornos de desarrollo.

MATLAB dispone de un código básico y de varias librerías especializadas (toolboxes). En estos
apuntes se hará referencia exclusiva al código básico.

MATLAB se puede arrancar como cualquier otra aplicación de Windows, clicando dos veces en el
icono correspondiente en el escritorio o por medio del menú Inicio). Al arrancar MATLAB se abre
una ventana similar a la mostrada en la Figura 1. Ésta es la vista que se obtiene eligiendo la opción
Desktop Layout/Default, en el menú View. Como esta configuración puede ser cambiada fácilmen-
te por el usuario, es posible que en muchos casos concretos lo que aparezca sea muy diferente. En
cualquier caso, una vista similar se puede conseguir con el citado comando View/Desktop La-
yout/Default. Esta ventana inicial requiere unas primeras explicaciones.

Aprenda Matlab 7.0 como si estuviera en Primero página 4

La parte más importante de la ventana inicial es la Command Window, que aparece en la parte de-
recha. En esta sub-ventana es donde se ejecutan los comandos de MATLAB, a continuación del
prompt (aviso) característico (>>), que indica que el programa está preparado para recibir instruc-
ciones. En la pantalla mostrada en la Figura 1 se ha ejecutado el comando A=magic(6), mostrándo-
se a continuación el resultado proporcionado por MATLAB.

Figura 2. Menú Start/MATLAB.

Figura 3. Menú Start/Desktop Tools.

En la parte superior izquierda de la pantalla aparecen dos ventanas también muy útiles: en la parte
superior aparece la ventana Current Directory, que se puede alternar con Workspace clicando en la
pestaña correspondiente. La ventana Current Directory muestra los ficheros del directorio activo o
actual. El directorio activo se puede cambiar desde la Command Window, o desde la propia ventana
(o desde la barra de herramientas, debajo de la barra de menús) con los métodos de navegación de
directorios propios de Windows. Clicando dos veces sobre alguno de los ficheros *.m del directorio
activo se abre el editor de ficheros de MATLAB, herramienta fundamental para la programación
sobre la que se volverá en las próximas páginas. El Workspace contiene información sobre todas las
variables que se hayan definido en esta sesión y permite ver y modificar las matrices con las que se
esté trabajando.

En la parte inferior derecha aparece la ventana Command History que muestra los últimos coman-
dos ejecutados en la Command Window. Estos comandos se pueden volver a ejecutar haciendo
doble clic sobre ellos. Clicando sobre un comando con el botón derecho del ratón se muestra un
menú contextual con las posibilidades disponibles en ese momento. Para editar uno de estos co-
mandos hay que copiarlo antes a la Command Window.

Figura 1. Ventana inicial de MATLAB 7.0.

Capítulo 2: Introducción página 5

En la parte inferior izquierda de la pantalla aparece el botón Start, con una función análoga a la del
botón Inicio de Windows. Start da acceso inmediato a ciertas capacidades del programa. La Figura
2 muestra las posibilidades de Start/MATLAB, mientras que la Figura 3 muestra las opciones de
Start/Desktop Tools, que permiten el acceso a las principales componentes o módulos de MA-
TLAB. El menú Desktop realiza un papel análogo al botón Start, dando acceso a los módulos o
componentes de MATLAB que se tengan instalados.
Puede hacerse que al arrancar MATLAB se ejecute automáticamente un fichero, de modo que apa-
rezca por ejemplo un saludo inicial personalizado. Esto se hace mediante un fichero de comandos
que se ejecuta de modo automático cada vez que se entra en el programa (el fichero startup.m, que
debe estar en un directorio determinado, por ejemplo C:\Matlab701\Work. Ver apartado 2.7, en la
página 19).

Para apreciar desde el principio la potencia de MATLAB, se puede comenzar por escribir en la
Command Window la siguiente línea, a continuación del prompt. Al final hay que pulsar intro.

>> A=rand(6), B=inv(A), B*A
A =
 0.9501 0.4565 0.9218 0.4103 0.1389 0.0153
 0.2311 0.0185 0.7382 0.8936 0.2028 0.7468
 0.6068 0.8214 0.1763 0.0579 0.1987 0.4451
 0.4860 0.4447 0.4057 0.3529 0.6038 0.9318
 0.8913 0.6154 0.9355 0.8132 0.2722 0.4660
 0.7621 0.7919 0.9169 0.0099 0.1988 0.4186
B =
 5.7430 2.7510 3.6505 0.1513 -6.2170 -2.4143
 -4.4170 -2.5266 -1.4681 -0.5742 5.3399 1.5631
 -1.3917 -0.6076 -2.1058 -0.0857 1.5345 1.8561
 -1.6896 -0.7576 -0.6076 -0.3681 3.1251 -0.6001
 -3.6417 -4.6087 -4.7057 2.5299 6.1284 0.9044
 2.7183 3.3088 2.9929 -0.1943 -5.1286 -0.6537
ans =
 1.0000 0.0000 0 0.0000 0.0000 -0.0000
 0.0000 1.0000 0.0000 0.0000 -0.0000 0.0000
 0 0 1.0000 -0.0000 -0.0000 0.0000
 0.0000 0 -0.0000 1.0000 -0.0000 0.0000
 -0.0000 0.0000 -0.0000 -0.0000 1.0000 0.0000
 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000 1.0000

En realidad, en la línea de comandos anterior se han escrito tres instrucciones diferentes, separadas
por comas. Como consecuencia, la respuesta del programa tiene tres partes también, cada una de
ellas correspondiente a una de las instrucciones. Con la primera instrucción se define una matriz
cuadrada (6×6) llamada A, cuyos elementos son números aleatorios entre cero y uno (aunque apa-
rezcan sólo 4 cifras, han sido calculados con 16 cifras de precisión). En la segunda instrucción se
define una matriz B que es igual a la inversa de A. Finalmente se ha multiplicado B por A, y se
comprueba que el resultado es la matriz unidad2.

Es con grandes matrices o grandes sistemas de ecuaciones como MATLAB obtiene toda la potencia
del ordenador. Por ejemplo, las siguientes instrucciones permiten calcular la potencia de cálculo del
ordenador en Megaflops (millones de operaciones aritméticas por segundo). En la primera línea se
crean tres matrices de tamaño 1000×1000, las dos primeras con valores aleatorios y la tercera con
valores cero. La segunda línea toma tiempos, realiza el producto de matrices, vuelve a tomar tiem-
pos y calcula de modo aproximado el número de millones de operaciones realizadas. La tercera lí-

2 Al invertir la matriz y al hacer el producto posterior se han introducido pequeños errores numéricos de redondeo en

el resultado, lo cual hace que no todos los elementos cero del resultado aparezcan de la misma forma.

Aprenda Matlab 7.0 como si estuviera en Primero página 6

nea calcula los Megaflops por segundo, para lo cual utiliza la función etime() que calcula el tiempo
transcurrido entre dos instantes definidos por dos llamadas a la función clock3:

>> n=1000; A=rand(n); B=rand(n); C=zeros(n);
>> tini=clock; C=B*A; tend=clock; mflops=(2*n^3)/1000000;
>> mflops/etime(tend,tini)

Otro de los puntos fuertes de MATLAB son los gráficos, que se verán con más detalle en una sec-
ción posterior. A título de ejemplo, se puede teclear la siguiente línea y pulsar intro:

>> x=-4:.01:4; y=sin(x); plot(x,y), grid, title('Función seno(x)')

En la Figura 4 se puede observar que se abre una
nueva ventana en la que aparece representada la
función sin(x). Esta figura tiene un título "Función
seno(x)" y una cuadrícula o "grid". En realidad la
línea anterior contiene también varias instruccio-
nes separadas por comas o puntos y comas. En la
primera se crea un vector x con 801 valores reales
entre -4 y 4, separados por una centésima. A conti-
nuación se crea un vector y, cada uno de cuyos
elementos es el seno del correspondiente elemento
del vector x. Después se dibujan los valores de y
en ordenadas frente a los de x en abscisas. Las dos
últimas instrucciones establecen la cuadrícula y el
título.

Un pequeño aviso antes de seguir adelante. Ade-
más de con la Command History, es posible recu-
perar comandos anteriores de MATLAB y moverse por dichos comandos con el ratón y con las te-
clas-flechas ↑ y ↓. Al pulsar la primera de dichas flechas aparecerá el comando que se había intro-
ducido inmediatamente antes. De modo análogo es posible moverse sobre la línea de comandos con
las teclas ← y →, ir al principio de la línea con la tecla Inicio, al final de la línea con Fin, y borrar
toda la línea con Esc. Recuérdese que sólo hay una línea activa (la última).

Para borrar todas las salidas ante-
riores de MATLAB y dejar limpia
la Command Window se pueden
utilizar las funciones clc y home.
La función clc (clear console) eli-
mina todas las salidas anteriores,
mientras que home las mantiene,
pero lleva el prompt (>>) a la pri-
mera línea de la ventana.

Si se desea salir de MATLAB basta
teclear los comandos quit o exit,
elegir Exit MATLAB en el menú File o utilizar cualquiera de los medios de terminar una aplicación
en Windows.

3 En un portátil con Pentium IV Mobile a 2 Ghz el número de Mflops puede ser del orden de 1350. Hace 10 años un

ordenador de esta potencia hubiera costado varios millones de Euros.

Figura 4. Gráfico de la función seno(x).

Figura 5. Menú Help de MATLAB.

Capítulo 2: Introducción página 7

2.4. Uso del Help
MATLAB 7.0 dispone de un excelente Help con el que se puede encontrar la información que se
desee. La Figura 5 muestra las distintas opciones que aparecen en el menú Help de la ventana prin-
cipal de la aplicación:

1. Full Product Family Help, Se abre la
ventana de la Figura 8, en la que se puede
buscar información general sobre MA-
TLAB o sobre otros productos de la fami-
lia a los que se tenga acceso. La forma de
la ventana de ayuda es típica y común con
otros niveles de ayuda. La mayor parte de
las páginas de ayuda están en formato
HTML.

2. MATLAB Help. Se abre la ventana de la
Figura 9, en la que se puede buscar ayuda
general sobre MATLAB o sobre la fun-
ción o el concepto que se desee. La porta-
da de esta ayuda tiene tres capítulos prin-
cipales: Functions, que contiene informa-
ción de referencia sobre las funciones por
orden alfabético o por categorías; Handle
Graphics, que permite acceder a informa-
ción concreta sobre las distintas propieda-
des de los objetos gráficos; Documenta-
tion Set, que da acceso a versiones com-
pletas de los manuales del programa en
formato de pantalla fácilmente navegable
(con apartados de Getting Started, User Guides, Programming Tips y Examples in Documenta-
tion), Product Demos (con una colección de jemplos programados que se pueden ejecutar y cu-
yo código se puede examinar para ver cómo están programados), What's New (con las noveda-
des de esta versión respecto a la anterior), Printing the Documentation Set (que permite abrir
documentos PDF (Portable Document Format), que se corrresponden con las versiones en papel
de los manuales del programa, y que precisan del programa Adobe Acrobat Reader 5.0 o supe-
rior.) y un apartado final sobre The MathWorks Web Site Resources (que permite acceder a una
amplísima colección de informaciones adicionales disponibles en la web de la empresa que ha
desarrollado MATLAB). En la parte izquierda de la ventana, cuando está seleccionada la pesta-
ña Contents, aparece un índice temático estructurado en forma de árbol que puede ser desplega-
do y recorrido con gran facilidad. Las restantes pestañas de esta ventana dan acceso a un índice
por palabras (Index), a un formulario de búsqueda (Search) y a la colección de ejemplos ya pro-
gramados antes citada (Demos).

3. Using the Desktop. Se abre una ventana de ayuda con un formato similar a las de las Figuras
anteriores con información detallada sobre cómo utilizar y configurar el entorno de desarrollo o
Desktop. Las distintas herramientas disponibles se describen sucesivamente. Cada página dis-
pone de flechas y enlaces que permiten ir a la página siguiente o volver a la anterior. Es posible
también imprimir aquellas páginas que se deseee consultar o archivar sobre papel. Una caracte-
rística muy importante es la posibilidad de organizar las ventanas con gran flexibilidad, agru-
pándolas o independizándoles según los propios gustos o deseos.

Figura 6. Algunas páginas web sobre MATLAB.

Figura 7. Demos disponibles en MATLAB.

Aprenda Matlab 7.0 como si estuviera en Primero página 8

4. Using the Command Window. Esta opción del menú Help da acceso a la información necesaria
para aprovechar las capacidades de la Command Window, que es el corazón de MATLAB.

5. Web Resources. La ¡Error! No se encuentra el origen de la referencia. muestra algunas di-
recciones de Internet con información interesante sobre MATLAB. Todas ellas corresponden a
distintas secciones de la web de The Mathworks (la empresa que desarrolla y comercializa MA-
TLAB), cuya página de inicio se muestra en primer lugar.

6. Check for Updates. MATLAB se conecta con The Mathworks y comprueba si has versiones
más recientes de los productos instalados. Si se es un usuario registrado, es posible descargar las
versiones más actuales.

7. Demos. Se abre una ventana como la mostrada en la Figura 7 que da acceso a un buen número
de ejemplos resueltos con MATLAB, cuyos resultados se presentan gráficamente de diversas
formas. Es muy interesante recorrer estos ejemplos para hacerse idea de las posibilidades del
programa, tanto en cálculo como en gráficos. Es asimismo muy instructivo analizar los ficheros
*.m de los ejemplos de características similares a las de la aplicación de se desea desarrollar.

Además, de una forma muy inmediata, es posible también recurrir al Help desde la línea de coman-
dos de la Command Window. Se aconseja practicar un poco al respecto. Por ejemplo, obsérvese la
respuesta a los siguientes usos del comando help:

>> help
>> help lang

El comando helpwin seguido de un nombre de comando o de función muestra la información co-
rrespondiente a ese comando en la ventana Help (ver Figura 8). En la parte superior de la ventana
que se abre se muestra un enlace View code for …, que permite acceder al código fuente si está
disponible; con la opción Go to online doc for ... se accede a una información más completa que
puede incluir ejemplos y comandos similares sobre los que también se ofrece ayuda. En la parte
inferior de la página aparece una lista de enlaces See Also a funciones relacionadas.

El comando doc tecleado en la línea de comandos equivale a Help/Full Product Family Help; si va
seguido de un nombre de comando o función se muestra la información detallada correspondiente a
ese comando de modo similar a Go to online doc for ... en el párrafo anterior.

En resumen, MATLAB dispone de una ayuda muy completa y accesible, estructurada en varios
niveles (línea de comandos en la Command Window, ventana Help, y manuales en formato PDF),
con la que es muy importante estar familiarizado, porque hasta los más expertos programadores
tienen que acudir a ella con una cierta frecuencia.

Figura 8. Ventana inicial de Help Full Product Family.

Figura 9. Ventana inicial de Help Matlab.

Capítulo 2: Introducción página 9

2.5. El entorno de trabajo de MATLAB
El entorno de trabajo de MATLAB es muy gráfico e intuitivo, similar al de otras aplicaciones pro-
fesionales de Windows. En la introducción a MATLAB realizada en el Apartado 2.3 y en la Figura
1, ya se han citado algunas de las componentes más importantes de este entorno de trabajo o de de-
sarrollo. Ahora de explicarán estas componentes con un poco más de detalle.

Las componentes más importantes del entorno de trabajo de MATLAB 7.0 son las siguientes:

1. El Escritorio de Matlab (Matlab Desktop), que es la ventana o contenedor de máximo nivel
en la que se pueden situar (to dock) las demás componentes.

2. Las componentes individuales, orientadas a tareas concretas, entre las que se puede citar:

a. La ventana de comandos (Command Window),
b. La ventana histórica de comandos (Command History),
c. El espacio de trabajo (Workspace),
d. La plataforma de lanzamiento (Launch Pad),
e. El directorio actual (Current Directory),
f. La ventana de ayuda (Help)
g. El editor de ficheros y depurador de errores (Editor&Debugger),
h. El editor de vectores y matrices (Array Editor).
i. La ventana que permite estudiar cómo se emplea el tiempo de ejecución (Profiler).

A continuación se describen brevemente estas componentes. Téngase en cuenta que utilizar MA-
TLAB y desarrollar programas para MATLAB es mucho más fácil si se conoce bien este entorno de
trabajo. Para alcanzar la máxima productividad personal en el uso de esta aplicación es por ello muy
importante leer con atención las secciones que siguen.

2.5.1. EL ESCRITORIO DE MATLAB (MATLAB DESKTOP)

El Matlab Desktop es la ventana más general de la aplicación. El resto de las ventanas o componen-
tes citadas pueden alojarse en la Matlab Desktop o ejecutarse como ventanas independientes. A su
vez, los componentes alojados en el Matlab Desktop pueden aparecer como sub-ventanas indepen-
dientes o como pestañas dentro de una de las sub-ventanas. MATLAB 7.0 ofrece una gran flexibili-
dad al respecto y es cada usuario quien decide en qué forma desea utilizar la aplicación.

Cuando se arranca MATLAB por primera vez o cuando se ejecuta el comando View/Desktop La-
yout/Default aparece una ventana como la mostrada en la Figura 10. Aunque dividida en tres zonas,
en realidad aparecen cuatro componentes, pues la sub-ventana superior izquierda contiene dos
componentes superpuestas que se permutan por medio de la pestaña correspondiente.

La Figura 11 muestra un detalle del menú Desktop, desde el que se controlan las componentes visi-
bles y la forma en que se visualizan. Por ejemplo, como en la Figura 10 la ventana activa es la
Command Window, en el menú de la Figura 11 aparece la opción de dejar de alojar dicha ventana
en el Matlab Desktop (Undock Command Window). Dicho menú permite también eliminar del
Desktop alguna de las componentes visibles o visualizar el Help (que no está visible). Con los sub-
menús de Desktop Layout se pueden adoptar algunas configuraciones predefinidas, como la confi-
guración por defecto (Default) o incluir sólo la Command Window. La configuración adoptada por
el usuario se mantendrá la siguiente vez que arranque el programa. Es posible también guardar dis-
tintas configuraciones con distintos nombres, para su uso posterior.

Aprenda Matlab 7.0 como si estuviera en Primero página 10

Figura 10. Configuración por defecto del Matlab Desktop.

Figura 11. Menú para configurar el Matlab Desktop.

Figura 12. Arrastrar una pestaña desde una sub-ventana.

Figura 13. Creación de una nueva sub-ventana.

Además del menú mostrado en la Figura 11, que cambia en algunos detalles según cual sea la ven-
tana activa, el usuario puede configurar el Matlab Desktop por medio del ratón mediante algunas
operaciones como las siguientes:

1. Colocando el ratón sobre los bordes intermedios de las sub-ventanas y arrastrando puede mo-
dificar su tamaño en la forma que desee.

2. Clicando sobre la barra de título de la sub-ventana activa y arrastrando (Figura 12) se puede
llevar a otra parte del Desktop, obteniéndose el resultado mostrado en la Figura 13.

3. Si todas las ventanas se van seleccionando sucesivamente y se elige la correspondiente opción
Undock... en el menú View, se podría obtener una configuración como la mostrada en la
Figura 14, en la que todas las ventanas son independientes y aparecen separadas en la barra de
tareas.

4. Finalmente, si se parte de la configuración por defecto y cada uno de los componentes se
arrastra sobre la Command Window se puede obtener una configuración como la mostrada en
la Figura 15, en la que todos los componentes abiertos aparecen como pestañas alternativas en
una ventana única.

Capítulo 2: Introducción página 11

Figura 14. Ventanas independientes sobre el Desktop.

Figura 15. Todos los componentes compartiendo ventana.

La variedad de configuraciones mostradas en las figuras precedentes da una idea de las posibilida-
des de adaptación a las preferencias del usuario que tiene la versión 7.0 de MATLAB. Otros com-
ponentes como el Help Browser podrían añadirse a esta ventana de forma análoga. En los apartados
siguientes se analizan algunas de las posibilidades de cada componente.

2.5.2. COMMAND WINDOW

Ésta es la ventana en la que se ejecutan interactivamente las instrucciones de MATLAB y en donde
se muestran los resultados correspondientes, si es el caso. En cierta forma es la ventana más impor-
tante y la única que existía en las primeras versiones de la aplicación. En esta nueva versión se han
añadido algunas mejoras significativas, como las siguientes:

1. Se permiten líneas de comandos muy largas que automáticamente siguen en la línea siguiente
al llegar al margen derecho de la ventana. Para ello hay que activar la opción Wrap Lines, en
el menú File/Preferences/Command Window.

2. Clicando con el botón derecho sobre el nombre de una función que aparezca en esta ventana
se tiene acceso a la página del Help sobre dicha función. Si el código fuente (fichero *.m) está
disponible, también se puede acceder al fichero correspondiente por medio del Edi-
tor/Debugger.

3. Comenzando a teclear el nombre de una función y pulsando la tecla Tab, MATLAB completa
automáticamente el nombre de la función, o bien muestra en la línea siguiente todas las fun-
ciones disponibles que comienzan con las letras tecleadas por el usuario.

4. Cuando al ejecutar un fichero *.m se produce un error y se obtiene el correspondiente mensaje
en la Command Window, MATLAB muestra mediante un subrayado un enlace a la línea del
fichero fuente en la que se ha producido el error. Clicando en ese enlace se va a la línea co-
rrespondiente del fichero por medio del Editor/Debugger.

2.5.3. COMMAND HISTORY BROWSER

La ventana Command History ofrece acceso a las sentencias que se han ejecutado anteriormente en
la Command Window. Estas sentencias están también accesibles por medio de las teclas ↑ y ↓ co-
mo en las versiones anteriores, pero esta ventana facilita mucho el tener una visión más general de
lo hecho anteriormente y seleccionar lo que realmente se desea repetir.

Las sentencias ejecutadas anteriormente se pueden volver a ejecutar mediante un doble clic o por
medio del menú contextual que se abre al clicar sobre ellas con el botón derecho. También se pue-

Aprenda Matlab 7.0 como si estuviera en Primero página 12

den copiar y volcar sobre la línea de comandos, pero se ha de copiar toda la línea, sin que se admita
la copia de un fragmento de la sentencia. Existen opciones para borrar algunas o todas las líneas de
esta ventana. Se puede también hacer un profile (evaluar la eficiencia relativa) de una sentencia o
de un grupo de sentencias.

2.5.4. CURRENT DIRECTORY BROWSER

El concepto de directorio activo o directorio actual es muy importante en MATLAB. Los progra-
mas de MATLAB se encuentran en ficheros con la extensión *.m. Estos ficheros se ejecutan te-
cleando su nombre en la línea de comandos (sin la extensión), seguido de los argumentos entre pa-
réntesis, si se trata de funciones. No todos los ficheros *.m que se encuentren en el disco duro o en
otras unidades lógicas montadas en una red local son accesibles sin más. Para que un fichero *.m se
pueda ejecutar es necesario que se cumpla una de las dos condiciones siguientes:

1. Que esté en el directorio actual. MATLAB mantiene en todo momento un único directorio
con esta condición. Este directorio es el primer sitio en el que MATLAB busca cuando desde
la línea de comandos se le pide que ejecute un fichero.

2. Que esté en uno de los directorios indicados en el Path de MATLAB. El Path es una lista or-
denada de directorios en los que el programa busca los ficheros o las funciones que ha de eje-
cutar. Muchos de los directorios del Path son propios de MATLAB, pero los usuarios tam-
bién pueden añadir sus propios directorios, normalmente al principio o al final de la lista. En
un próximo apartado se verá cómo se controla el Path.

El comando pwd (de print working directory) permite saber cuál es el directorio actual. Para cam-
biar de directorio actual se puede utilizar el comando cd (de change directory) en la línea de co-
mandos, seguido del nombre del directorio, para el cual se puede utilizar un path absoluto (por
ejemplo cd C:\Matlab\Ejemplos) o relativo (cd Ejemplos). Para subir un nivel en la jerarquía de
directorios se utiliza el comando cd .., y cd ../.. para subir dos niveles. Éste es el mismo sistema que
se sigue para cambiar de directorio en las ventanas de MS-DOS. MATLAB permite utilizar la barra
normal (/) y la barra invertida (\), indistintamente.

La ventana Current Directory permite explorar los directorios del ordenador en forma análoga a la
del Explorador u otras aplicaciones de Windows. Cuando se llega al directorio deseado se muestran
los ficheros y ficheros allí contenidos. La ventana Current Directory permite ordenarlos por fecha,
tamaño, nombre, etc. El directorio actual cambia automáticamente en función del directorio selec-
cionado con este explorador, y también se puede cambiar desde la propia barra de herramientas del
Matlab Desktop. Los ficheros *.m mostrados en la ventana Current Directory se pueden abrir con
el Editor/Debugger mediante un doble clic.

A partir del menú contextual que se abre clicando con el botón derecho en cualquier parte de la ven-
tana Current Directory se tiene la posibilidad de añadir ese directorio al Path de MATLAB.

2.5.5. PATH DE MATLAB: ESTABLECER EL CAMINO DE BÚSQUEDA (SEARCH PATH)

MATLAB puede llamar a una gran variedad de funciones, tanto propias como programadas por los
usuarios. Puede incluso haber funciones distintas con el mismo nombre. Interesa saber cuáles son
las reglas que determinan qué función o qué fichero *.m es el que se va a ejecutar cuando su nom-
bre aparezca en una línea de comandos del programa. Esto queda determinado por el camino de
búsqueda (search path) que el programa utiliza cuando encuentra el nombre de una función.

El search path de MATLAB es una lista de directorios que se puede ver y modificar a partir de la
línea de comandos, o utilizando el cuadro de diálogo Set Path, del menú File. El comando path

Capítulo 2: Introducción página 13

hace que se escriba el search path de MATLAB (el resultado depende de en qué directorio esté
instalado MATLAB; se muestran sólo unas pocas líneas de la respuesta real del programa):

>> path
>> path

 MATLABPATH

 C:\MATLAB701\toolbox\matlab\general
 C:\MATLAB701\toolbox\matlab\ops
 C:\MATLAB701\toolbox\matlab\lang
 C:\MATLAB701\toolbox\matlab\elmat
 ...
 C:\MATLAB701\toolbox\matlab\helptools
 C:\MATLAB701\toolbox\matlab\winfun
 C:\MATLAB701\toolbox\matlab\demos
 C:\MATLAB701\toolbox\local

Para ver cómo se utiliza el search path supóngase que se utiliza la palabra nombre1 en un coman-
do. El proceso que sigue el programa para tratar de conocer qué es nombre1 es el siguiente:

1. Comprueba si nombre1 es una variable previamente definida por el usuario.

2. Comprueba si nombre1 es una función interna o intrínseca de MATLAB.

3. Comprueba si nombre1 es una sub-función o una función privada del usuario (apartado 6.3).

4. Comprueba si hay un fichero llamado nombre1.mex, nombre1.dll o nombre1.m en el directo-
rio actual, cuyo contenido se obtiene con el comando dir. Ya se ha visto cómo se cambiaba el
directorio actual.

5. Comprueba si hay ficheros llamados nombre1.mex, nombre1.dll o nombre1.m en los directo-
rios incluidos en el search path de MATLAB.

Estos pasos se realizan por el orden indicado. En cuanto se encuentra lo que se está buscando se
detiene la búsqueda y se utiliza el fichero que se ha encontrado. Conviene saber que, a igualdad de
nombre, los ficheros *.mex tienen precedencia sobre los ficheros *.m que están en el mismo direc-
torio.

Figura 16. Cuadro de diálogo Set Path.

Figura 17. Añadir un directorio al Path.

El cuadro de diálogo que se abre con el comando File/Set Path ayuda a definir la lista de directorios
donde MATLAB debe buscar los ficheros de comandos y las funciones, tanto del sistema como de
usuario. Al ejecutar dicho comando aparece el cuadro de diálogo de la Figura 16, en el cual se
muestra la lista de directorios en la que MATLAB buscará. Para añadir (o quitar) un directorio a

Aprenda Matlab 7.0 como si estuviera en Primero página 14

esta lista se debe clicar sobre los botones Add Folder o Add with Subfolders, con lo cual aparece un
nuevo cuadro de diálogo, mostrado en la Figura 17, que ayuda a elegir el directorio deseado. El
nuevo directorio se añade al comienzo de la lista, pero desde esa posición puede desplazarse hacia
abajo o hasta el final con los botones Move Down o Move to Botton, respectivamente. Como ya se
ha dicho el orden de la lista es muy importante, porque refleja el orden de la búsqueda: si dos fun-
ciones con el mismo nombre están en dos directorios diferentes, se utilizará la que primero se en-
cuentre. El cuadro de diálogo Set Path contiene los botones necesarios para realizar todas las opera-
ciones que el usuario desee.

Para incluir desde la línea de comandos de MATLAB un directorio nuevo al comienzo del Path sin
utilizar el cuadro de diálogo Set Path, se puede utilizar también el comando path, que concatena
dos listas de directorios (sólo se deben utilizar directorios que realmente existan en el PC), como
por ejemplo:

>> path('c:\mat\matlab', path)4

mientras que para añadir el nuevo directorio al final de la lista, se utilizaría el comando:
>> path(path, 'c:\mat\practicas')

El comando addpath permite añadir uno o más directorios al Path. Su forma general puede verse en
los siguientes ejemplos:

>> addpath 'c:\Matlab' 'c:\Temp' -end
>> addpath 'c:\Matlab\Pruebas' 'c:\Temp\Pruebas' -begin

donde la opción por defecto (cuando no se pone ni –begin ni –end) es añadir al comienzo de la lista.
Después de ejecutar estos comandos conviene comprobar cómo ha quedado modificado el search
path (recuérdese que los directorios deben existir en realidad).

No es difícil borrar las líneas que se han introducido en el Path: por una parte, los cambios no son
permanentes y dejarán de surtir efecto al salir de MATLAB y volver a entrar (salvo que se guarden
como opciones estables). Además se puede utilizar el comando rmpath (de remove path), al que se
le pasan la lista de directorios a eliminar del Path. Por ejemplo, el comando:

>> rmpath 'c:\Matlab' 'c:\Temp'

borra del Path los dos directorios indicados.

2.5.6. WORKSPACE BROWSER Y ARRAY EDITOR

El espacio de trabajo de MATLAB (Workspace) es el conjunto de variables y de funciones de usua-
rio que en un determinado momento están definidas en la memoria del programa o de la función
que se está jecutando. Para obtener información sobre el Workspace desde la línea de comandos se
pueden utilizar los comandos who y whos. El segundo proporciona una información más detallada
que el primero. Por ejemplo, una salida típica del comando whos es la siguiente:

>> whos
 Name Size Bytes Class

 A 3x3 72 double array
 B 3x3 72 double array
 C 3x3 72 double array
 D 3x3 72 double array

Grand total is 36 elements using 288 bytes

4 El comando path dentro del paréntesis de la función devuelve la lista de directorios anterior.

Capítulo 2: Introducción página 15

Éstas son las variables del espacio de trabajo base (el de la línea de comandos de MATLAB). Más
adelante se verá que cada función tiene su propio espacio de trabajo, con variables cuyos nombres
no interfieren con las variables de los otros espacios de trabajo.

La ventana Workspace constituye un entorno gráfico para ver las variables definidas en el espacio
de trabajo. Se activa con el comando View/Workspace. La Figura 18 muestra el aspecto inicial de la
ventana Workspace cuando se abre desde un determinado programa. Haciendo doble clic por ejem-
plo sobre la matriz BARS aparece una nueva ventana (o pestaña, si la ventana ya existía) del Array
Editor, en la que se muestran y pueden ser modificados los elementos de dicha matriz (ver Figura
19).

Figura 18. Workspace Browser con elementos definidos. Figura 19. Array Editor (Editor de Matrices).

Es importante insistir en que cada una de las funciones de MATLAB tiene su propio espacio de
trabajo, al que en principio sólo pertenecen las variables recibidas como argumentos o definidas
dentro de la propia función. En la barra de herramientas de la ventana Workspace aparece una lista
desplegable llamada Stack, con los espacios de trabajo del programa actual. Hay que tener en cuen-
ta que cuando se termina de ejecutar una función y se devuelve el control al programa que la había
llamado, las variables definidas en la función dejan de existir (salvo que se hayan declarado como
persistent) y también deja de existir su espacio de trabajo.

Si se desean examinar otras matrices y/o vectores, al hacer doble clic sobre ellas el Array Editor las
muestra en la misma ventana como subventanas con una pestaña diferente.

Clicando con el botón derecho sobre alguna de las variables del Workspace Browser se abre un
menú contextual que ofrece algunas posibilidades interesantes, como por ejemplo la de representar
gráficamente dicha variable.

El Array Editor no sólo permite ver los valores de los elementos de cualquier matriz o vector defi-
nido en el programa: es también posible modificar estos valores clicando sobre la celda correspon-
diente. La ventana del Array Editor incluye una lista desplegable en la que se puede elegir el forma-
to en el que se desea ver los datos.

El Array Editor es muy útil también para entender bien ciertos algoritmos, ejecutando paso a paso
un programa y viendo cómo cambian los valores de las distintas variables. Es posible aparcar o si-
tuar las ventanas o pestañas del Array Editor en la misma ventana del Editor/Debugger, que se va a
ver a continuación.

Aprenda Matlab 7.0 como si estuviera en Primero página 16

2.5.7. EL EDITOR/DEBUGGER

En MATLAB tienen particular importancia los ya citados ficheros-M (o M-files). Son ficheros de
texto ASCII, con la extensión *.m, que contienen conjuntos de comandos o definición de funcio-
nes (estos últimos son un poco más complicados y se verán más adelante). La importancia de estos
ficheros-M es que al teclear su nombre en la línea de comandos y pulsar Intro, se ejecutan uno tras
otro todos los comandos contenidos en dicho fichero. El poder guardar instrucciones y grandes ma-
trices en un fichero permite ahorrar mucho trabajo de tecleado.

Figura 20. Ventana del Editor/Debugger.

Figura 21. Ejecución interactiva con el Editor/Debugger.

Aunque los ficheros *.m se pueden crear con cualquier editor de ficheros ASCII tal como Notepad,
MATLAB dispone de un editor que permite tanto crear y modificar estos ficheros, como ejecutarlos
paso a paso para ver si contienen errores (proceso de Debug o depuración). La Figura 20 muestra la
ventana principal del Editor/Debugger, en la que se ha tecleado un fichero-M llamado Prueba1.m,
que contiene un comentario y seis sentencias5. El Editor muestra con diferentes colores los diferen-
tes tipos o elementos constitutivos de los comandos (en verde los comentarios, en violeta las cade-
nas de caracteres, etc.). El Editor se preocupa también de que las comillas o paréntesis que se abren,
no se queden sin el correspondiente elemento de cierre. Colocando el cursor antes o después de una
apertura o cierre de corchete o paréntesis y pulsando las teclas (←) o (→), el Editor muestra con
qué cierre o apertura de corchete o paréntesis se empareja el elemento considerado; si no se empare-
ja con ninguno, aparece con una rayita de tachado.

Seleccionando varias líneas y clicando con el botón derecho aparece un menú contextual cuya sen-
tencia Comment permite entre otras cosas comentar con el carácter % todas las líneas selecciona-
das. Estos comentarios pueden volver a su condición de código ejecutable seleccionándolos y ejecu-
tando Uncomment en el menú contextual. Otra opción muy útil de ese menú contextual es Smart
Indent, que organiza el sangrado de los bucles y bifurcaciones de las sentencias seleccionadas.

La Figura 21 corresponde a una ejecución de este fichero de comandos controlada con el Debugger.
Dicha ejecución se comienza eligiendo el comando Run en el menú Debug, pulsando la tecla F5,
clicando en el botón Continue () de la barra de herramientas del Editor o tecleando el nombre
del fichero en la línea de comandos de la Command Window. Los puntos rojos que aparecen en el
margen izquierdo son breakpoints (puntos en los que se detiene la ejecución de programa); la fle-
cha verde en el borde izquierdo indica la sentencia en que está detenida la ejecución (antes de eje-
cutar dicha sentencia); cuando el cursor se coloca sobre una variable (en este caso sobre A) aparece
una pequeña ventana con los valores numéricos de esa variable, tal como se ve en la Figura 21.

5 Las seis sentencias de prueba1.m son las siguientes (reagrupadas en dos líneas):

clear all; A=rand(3,3); B=A';
C=inv(A); D=C*A; disp('Ya he terminado');

Capítulo 2: Introducción página 17

En la Figura 21 puede apreciarse también que están activados los botones que corresponden al De-
bugger. El significado de estos botones, que aparece al colocar sobre ellos el cursor, es el siguiente:

 Set/Clear Breakpoint. Coloca o borra un breakpoint en la línea en que está el cursor.

 Clear All Breakpoints. Elimina todos los breakpoints que haya en el fichero.

 Step. Avanzar un paso sin entrar en las funciones de usuario llamadas en esa línea.

 Step In. Avanzar un paso, y si en ese paso hay una llamada a una función cuyo fichero
*.m está accesible, entra en dicha función.

 Step Out. Salir de la función que se está ejecutando en ese momento.

 Continue. Continuar la ejecución hasta el siguiente breakpoint.
 Quit Debugging. Terminar la ejecución del Debugger.

 Stack. En la parte derecha de la barra de herramientas aparece esta lista desplegable
(visible en la Figura 21 con las letras Pru...) mediante la cual se puede elegir el con-
texto, es decir el espacio de trabajo o el ámbito de las variables que se quieren exami-
nar. Ya se ha comentado que el espacio de trabajo base (el de las variables creadas
desde la línea de comandos) y el espacio de trabajo de cada función son diferentes.

El Debugger es un programa que hay que conocer muy bien, pues es muy útil para detectar y corre-
gir errores. Es también enormemente útil para aprender métodos numéricos y técnicas de programa-
ción. Para aprender a manejar el Debugger lo mejor es practicar.

Cuando se está ejecutando un programa con el Debugger, en cualquier momento se puede ir a la
línea de comandos de MATLAB y teclear una expresión para ver su resultado. También se puede
seleccionar con el ratón una sub-expresión en cualquier línea vista en el Editor/Debugger, clicar
con el botón derecho y en el menú contextual que se abre elegir Evaluate Selection. El resultado de
evaluar esa sub-expresión aparece en la línea de comandos de MATLAB.

Ya en las versiones anteriores MATLAB disponía de un Debugger alfanumérico que se utilizaba
desde la línea de comandos y en el que está basado el nuevo Debugger gráfico del que se ha habla-
do anteriormente. De hecho, al realizar operaciones con el Debugger gráfico van apareciendo las
correspondientes instrucciones en la línea de comandos de MATLAB. Para más información sobre
los comandos del Debugger alfanumérico, buscar en la sección “Editing and Debugging M-Files”
en Help/Matlab/Desktop Tools and Development Environment.
Seleccionando el nombre de una función o de un fichero de comandos en el código mostrado en la
ventana del Editor/Debugger y abriendo con el botón derecho el menú contextual correspondiente,
se ofrecen las tres posibilidades Evaluate Selection, Open Selection y Help on Selection, que son
muy útiles para comprobar, ver o recibir ayuda sobre la función seleccionada.

MATLAB permite también introducir breakpoints
condicionales (indicados con un punto amarillo, en
vez de rojo), en los que el programa se para sólo si
se cumple una determinada condición. Para introdu-
cir un breakpoint condicional basta clicar con el
botón derecho en la correspondiente línea del código
en la ventana del Editor/Debugger y elegir en el
menú contextual que resulta Set/Modify Conditional
Breakpoint. Se abre una ventana como la mostrada
en la Figura 22 en la que se escribe la condición que debe cumplirse para que el programa se deten-
ga en dicho punto.

Figura 22. Establecer una condición en un breakpoint.

Aprenda Matlab 7.0 como si estuviera en Primero página 18

2.5.8. EL PROFILER

El profiler es un programa de utilidad que permite saber cómo se ha empleado el tiempo de la CPU
en la ejecución de un determinado programa. El profiler es una herramienta muy útil para determi-
nar los cuellos de botella de un programa, es decir las funciones y las líneas de código que más ve-
ces se llaman y que se llevan la mayor parte del tiepo de ejecución. Por ejemplo, es obvio que si se
trata de mejorar la eficiencia de un programa, sería más importante mejorar una función que se lle-
vase el 60% del tiempo total que otra que sólo se llevase el 2%. Dentro de la función más llamada,
el profiler proporcina información sobre el tiempo que se lleva cada sentencia, y da también algu-
nas orientaciones sobre las posibilidades de mejorarla.

Para explicar el profiler es mejor haber avanzado más en el conocimiento de MATLAB. Por eso, su
presentación se demorará hasta la sección 6.11, a partir de la página 95.

2.6. Preferencias: Formatos de salida y de otras opciones de MATLAB
MATLAB 7.0 dispone de un cuadro de diálogo desde el que se establecen casi todas las opciones
que el usuario puede determinar por su cuenta. Este cuadro de diálogo se abre con el comando Pre-
ferences del menú File. En la Figura 23 se aparece el cuadro de diálogo Preferences mostrando
todas las posibilidades que ofrece en el menú de la izquierda: en total son 24 cuadros de diálogo
diferentes. La Figura 24 muestra el que permite elegir los colores generales del código.

Figura 23. Cuadro de diálogo Preferences/General.

Figura 24. Cuadro de diálogo Preferences/ Color.

El cuadro de diálogo Command Window/Fonts ofrece la posibilidad de elegir el tipo de letra –así
como el tamaño y el color, tanto de las letras como del fondo– con la que se escribe en la ventana de
comandos de MATLAB. Es muy importante utilizar tipos de letra de tamaño constante (por ejem-
plo, Courier New, Lucida Console o Monospaced), para que las filas de las matrices se alineen
bien en la pantalla.

Respecto a los formatos numéricos con que MATLAB muestra los resultados (recuérdese que
siempre calcula con doble precisión, es decir con unas 16 cifras decimales equivalentes), las posibi-
lidades existentes se muestran en la lista desplegable de la Figura 25 y son las siguientes:

short coma fija con 4 decimales (defecto)
long coma fija con 15 decimales
hex cifras hexadecimales
bank números con dos cifras decimales
short e notación científica con 4 decimales

Capítulo 2: Introducción página 19

short g notación científica o decimal, dependiendo del valor
long e notación científica con 15 decimales
long g notación científica o decimal, dependiendo del valor
rational expresa los números racionales como cocientes de enteros

Estos formatos se pueden cambiar también desde la línea de comandos anteponiendo la palabra
format. Por ejemplo, para ver las matrices en formato long habrá que ejecutar el comando:

>> format long

Por otra parte, el formato loose introduce algunas líneas en blanco en la salida (opción por defecto),
mientras que el formato compact elimina las líneas en blanco citadas (es la opción recomendada en
este manual). Estas opciones están disponibles en el cuadro de diálogo de la Figura 25 y se pueden
también establecer desde la línea de comandos en la forma:

>> format compact

El cuadro de diálogo de la Figura 26 permite elegir un editor de programas distinto del que trae
MATLAB (built-in editor), así como obligar a que los ficheros se abran de modo automático al eje-
cutarlos con el Debugger.

Figura 25. Cuadro de diálogo Prefs./Command Window.

Figura 26. Cuadro de diálogo Prefs./Editor&Debugger.

MATLAB aplica un factor de escala general a las matrices cuando los elementos no enteros más
grandes o más pequeños son superiores o inferiores a una determinada cantidad (103 y 10–3, respec-
tivamente). Hay que añadir que MATLAB trata de mantener el formato de los números que han
sido definidos como enteros (sin punto decimal). Si se elige la opción format rational el programa
trata de expresar los números racionales como cocientes de enteros.

2.7. Ficheros matlabrc.m, startup.m y finish.m
El search path inicial o por defecto de MATLAB está definido en un fichero llamado matlabrc.m,
en el sub-directorio toolbox\local. Este fichero contiene también otros parámetros de inicialización
y es, por ejemplo, el responsable de los mensajes que aparecen al arrancar el programa. Este fichero
se ejecuta automáticamente al arrancar MATLAB.

En las instalaciones de MATLAB en red, matlabrc.m es un fichero controlado por el administrador
del sistema. Una de las cosas que hace este fichero es ver si en algún directorio del search path
existe otro fichero llamado startup.m, y en caso de que exista lo ejecuta. Esto abre la posibilidad de
que cada usuario arranque MATLAB de una forma personalizada. Si en el search path de MA-

Aprenda Matlab 7.0 como si estuviera en Primero página 20

TLAB se coloca un fichero creado por el usuario llamado startup.m las instrucciones contenidas en
dicho fichero se ejecutarán automáticamente cada vez que arranque MATLAB.

Un posible contenido de este fichero puede ser el siguiente (crearlo con el Editor/Debugger):
>> format compact
>> addpath 'c:\Matlab\Practicas' -end
>> disp('¡Hola!')

Se puede crear el fichero startup.m en el directorio indicado y probar a arrancar MATLAB. Si el
saludo ¡Hola! se sustituye por un saludo más personal (por ejemplo, incluyendo el propio nombre),
se comprobará lo explicado previamente. Es muy aconsejable crear este fichero si MATLAB se
utiliza en un ordenador de uso personal.

De forma análoga, al abandonar la ejecución de MATLAB con el comando quit se ejecuta automá-
ticamente el fichero finish.m, siempre que se encuentre en alguno de los directorios del search
path. Este fichero se puede utilizar por ejemplo para guardar el espacio de trabajo de MATLAB
(ver apartado 2.8) y poder continuar en otro momento a partir del punto en el que se abandonó el
trabajo, por ejemplo al cerrar el programa.

2.8. Guardar variables y estados de una sesión: Comandos save y load
En muchas ocasiones puede resultar interesante interrumpir el trabajo con MATLAB y poderlo re-
cuperar más tarde en el mismo punto en el que se dejó (con las mismas variables definidas, con los
mismos resultados intermedios, etc.). Hay que tener en cuenta que al salir del programa todo el con-
tenido de la memoria se borra automáticamente.

Para guardar el estado de una sesión de trabajo existe el comando save. Si se teclea:
>> save

antes de abandonar el programa, se crea en el directorio actual un fichero binario llamado ma-
tlab.mat (o matlab) con el estado de la sesión (excepto los gráficos, que por ocupar mucha memoria
hay que guardar aparte). Dicho estado puede recuperarse la siguiente vez que se arranque el pro-
grama con el comando:

>> load

Esta es la forma más básica de los comandos save y load. Se pueden guardar también matrices y
vectores de forma selectiva y en ficheros con nombre especificado por el usuario. Por ejemplo, el
comando (sin comas entre los nombres de variables):

>> save filename A x y

guarda las variables A, x e y en un fichero binario llamado filename.mat (o filename). Para recupe-
rarlas en otra sesión basta teclear:

>> load filename

Si no se indica ninguna variable, se guardan todas las variables creadas en esa sesión.

El comando save permite guardar el estado de la sesión en formato ASCII utilizándolo de la si-
guiente forma (lo que va detrás del carácter (%) es un comentario que es ignorado por MATLAB):

>> save -ascii % almacena 8 cifras decimales
>> save -ascii -double % almacena 16 cifras decimales
>> save -ascii -double -tab % almacena 16 cifras separadas por tabs

aunque en formato ASCII sólo se guardan los valores y no otra información tal como los nombres
de las matrices y/o vectores. Cuando se recuperan estos ficheros con load -ascii toda la información

Capítulo 2: Introducción página 21

se guarda en una única matriz con el nombre del fichero. Esto produce un error cuando no todas las
filas tienen el mismo número de elementos.

Con la opción -append en el comando save la información se guarda a continuación de lo que
hubiera en el fichero.

El comando load admite las opciones -ascii y -mat, para obligarle a leer en formato ASCII o bina-
rio, respectivamente.

2.9. Guardar sesión y copiar salidas: Comando diary
Los comandos save y load crean ficheros binarios o ASCII con el estado de la sesión. Existe otra
forma más sencilla de almacenar en un fichero un texto que describa lo que el programa va hacien-
do (la entrada y salida de los comandos utilizados). Esto se hace con el comando diary en la forma
siguiente:

>> diary filename.txt
...
>> diary off
...
>> diary on
...

El comando diary off suspende la ejecución de diary y diary on la reanuda. El simple comando dia-
ry pasa de on a off y viceversa. Para poder acceder al fichero filename.txt con Notepad o Word es
necesario que diary esté en off. Si en el comando diary no se incluye el nombre del fichero se utili-
za por defecto un fichero llamado diary (sin extensión).

2.10. Líneas de comentarios
Ya se ha indicado que para MATLAB el carácter tanto por ciento (%) indica comienzo de comenta-
rio. Cuando aparece en una línea de comandos, el programa supone que todo lo que va desde ese
carácter hasta el fin de la línea es un comentario.

Más adelante se verá que los comentarios de los ficheros *.m tienen algunas peculiaridades impor-
tantes, pues pueden servir para definir help's personalizados de las funciones que el usuario vaya
creando.

MATLAB permite comentar bloques de sentencias, es decir, muchas sentencias contiguas de una
vez. Una forma de hacerlo es seleccionar las sentencias que se desea comentar, clicar con el botón
derecho, y elegir la opción Comment en el menú que se abre; las sentencias selecionadas se comen-
tan individualmente con el carácter %. De forma similar se pueden eliminar los comentarios.

Otra forma de comentar bloques de sentencias (similar a la utilizada en C/C++ con /* y */) es ence-
rrar las líneas que se desea inutilizar entre los caracteres %{ y %}. Los bloques comentados pueden
incluirse dentro de otros bloques comentados más amplios (bloques anidados).

2.11. Medida de tiempos y de esfuerzo de cálculo
MATLAB dispone de funciones que permiten calcular el tiempo empleado en las operaciones ma-
temáticas realizadas. Algunas de estas funciones son las siguientes:

cputime devuelve el tiempo de CPU (con precisión de centésimas de segundo) desde
que el programa arrancó. Llamando antes y después de realizar una operación y
restando los valores devueltos, se puede saber el tiempo de CPU empleado en
esa operación. Este tiempo sigue corriendo aunque MATLAB esté inactivo.

Aprenda Matlab 7.0 como si estuviera en Primero página 22

etime(t2, t1) tiempo transcurrido entre los vectores t1 y t2 (¡atención al orden!), obtenidos
como respuesta al comando clock.

tic ops toc imprime el tiempo en segundos requerido por ops. El comando tic pone el reloj
a cero y toc obtiene el tiempo transcurrido.

A modo de ejemplo, el siguiente código mide de varias formas el tiempo necesario para resolver un
sistema de 1000 ecuaciones con 1000 incógnitas. Téngase en cuenta que los tiempos pequeños (del
orden de las décimas o centésimas de segundo), no se pueden medir con gran precisión.

>> n=1000; A=rand(n); b=rand(n,1); x=zeros(n,1);
>> tiempoIni=clock; x=A\b; tiempo=etime(clock, tiempoIni)
>> time=cputime; x=A\b; time=cputime-time
>> tic; x=A\b; toc

donde se han puesto varias sentencias en la misma línea para que se ejecuten todas sin tiempos
muertos al pulsar intro. Esto es especialmente importante en la línea de comandos en la que se quie-
re medir los tiempos. Todas las sentencias de cálculos matriciales van seguidas de punto y coma (;)
con objeto de evitar la impresión de resultados. Conviene ejecutar dos o tres veces cada sentencia
para obtener tiempos óptimos, ya que la primera vez que se ejecutan se emplea un cierto tiempo en
cargar las funciones a memoria.

Capítulo 3: Operaciones con matrices y vectores página 23

3. OPERACIONES CON MATRICES Y VECTORES
Ya se ha comentado que MATLAB es fundamentalmente un programa para cálculo matricial. Ini-
cialmente se utilizará MATLAB como programa interactivo, en el que se irán definiendo las matri-
ces, los vectores y las expresiones que los combinan y obteniendo los resultados sobre la marcha. Si
estos resultados son asignados a otras variables podrán ser utilizados posteriormente en otras expre-
siones. En este sentido MATLAB sería como una potente calculadora matricial (en realidad es esto
y mucho más...).

Antes de tratar de hacer cálculos complicados, la primera tarea será aprender a introducir matrices y
vectores desde el teclado. Más adelante se verán otras formas más potentes de definir matrices y
vectores.

3.1. Definición de matrices desde teclado
Como en casi todos los lenguajes de programación, en MATLAB las matrices y vectores son varia-
bles que tienen nombres. Ya se verá luego con más detalle las reglas que deben cumplir estos nom-
bres. Por el momento se sugiere que se utilicen letras mayúsculas para matrices y letras minúscu-
las para vectores y escalares (MATLAB no exige esto, pero puede resultar útil).

Para definir una matriz no hace falta declararlas o establecer de antemano su tamaño (de hecho, se
puede definir un tamaño y cambiarlo posteriormente). MATLAB determina el número de filas y de
columnas en función del número de elementos que se proporcionan (o se utilizan). Las matrices se
definen o introducen por filas6; los elementos de una misma fila están separados por blancos o
comas, mientras que las filas están separadas por pulsaciones intro o por caracteres punto y coma
(;). Por ejemplo, el siguiente comando define una matriz A de dimensión (3×3):

>> A=[1 2 3; 4 5 6; 7 8 9]

La respuesta del programa es la siguiente:
A =
 1 2 3
 4 5 6
 7 8 9

A partir de este momento la matriz A está disponible para hacer cualquier tipo de operación con ella
(además de valores numéricos, en la definición de una matriz o vector se pueden utilizar expresio-
nes y funciones matemáticas). Por ejemplo, una sencilla operación con A es hallar su matriz tras-
puesta. En MATLAB el apóstrofo (') es el símbolo de transposición matricial. Para calcular A'
(traspuesta de A) basta teclear lo siguiente (se añade a continuación la respuesta del programa):

>> A'
ans =
 1 4 7
 2 5 8
 3 6 9

Como el resultado de la operación no ha sido asignado a ninguna otra matriz, MATLAB utiliza un
nombre de variable por defecto (ans, de answer), que contiene el resultado de la última operación.
La variable ans puede ser utilizada como operando en la siguiente expresión que se introduzca.
También podría haberse asignado el resultado a otra matriz llamada B:

6 Aunque en MATLAB las matrices se introducen por filas, se almacenan por columnas, lo cual tiene su importancia

como se verá más adelante.

Aprenda Matlab 7.0 como si estuviera en Primero página 24

>> B=A'
B =
 1 4 7
 2 5 8
 3 6 9

Ahora ya están definidas las matrices A y B, y es posible seguir operando con ellas. Por ejemplo, se
puede hacer el producto B*A (deberá resultar una matriz simétrica):

>> B*A
ans =
 66 78 90
 78 93 108
 90 108 126

En MATLAB se accede a los elementos de un vector poniendo el índice entre paréntesis (por ejem-
plo x(3) ó x(i)). Los elementos de las matrices se acceden poniendo los dos índices entre paréntesis,
separados por una coma (por ejemplo A(1,2) ó A(i,j)). Las matrices se almacenan por columnas
(aunque se introduzcan por filas, como se ha dicho antes), y teniendo en cuenta esto puede acceder-
se a cualquier elemento de una matriz con un sólo subíndice. Por ejemplo, si A es una matriz
(3×3) se obtiene el mismo valor escribiendo A(1,2) que escribiendo A(4).
Invertir una matriz es casi tan fácil como trasponerla. A continuación se va a definir una nueva ma-
triz A -no singular- en la forma:

>> A=[1 4 -3; 2 1 5; -2 5 3]
A =
 1 4 -3
 2 1 5
 -2 5 3

Ahora se va a calcular la inversa de A y el resultado se asignará a B. Para ello basta hacer uso de la
función inv() (la precisión o número de cifras con que se muestra el resultado se puede cambiar con
el menú File/Preferences/General):

B=inv(A)
B =
 0.1803 0.2213 -0.1885
 0.1311 0.0246 0.0902
 -0.0984 0.1066 0.0574

Para comprobar que este resultado es correcto basta pre-multiplicar A por B;
>> B*A
ans =
 1.0000 0.0000 0.0000
 0.0000 1.0000 0.0000
 0.0000 0.0000 1.0000

De forma análoga a las matrices, es posible definir un vector fila x en la forma siguiente (si los tres
números están separados por blancos o comas, el resultado será un vector fila):

>> x=[10 20 30] % vector fila
x =
 10 20 30

Por el contrario, si los números están separados por intros o puntos y coma (;) se obtendrá un vec-
tor columna:

Capítulo 3: Operaciones con matrices y vectores página 25

>> y=[11; 12; 13] % vector columna
y =
 11
 12
 13

MATLAB tiene en cuenta la diferencia entre vectores fila y vectores columna. Por ejemplo, si se
intenta sumar los vectores x e y se obtendrá el siguiente mensaje de error:

>> x+y
??? Error using ==> +
Matrix dimensions must agree.

Estas dificultades desaparecen si se suma x con el vector transpuesto de y:
>> x+y'
ans =
 21 32 43

MATLAB considera vectores fila por defecto, como se ve en el ejemplo siguiente:
>> x(1)=1, x(2)=2
x =
 1
x =
 1 2

A continuación se van a estudiar estos temas con un poco más de detenimiento.

3.2. Operaciones con matrices

3.2.1. OPERADORES ARITMÉTICOS

MATLAB puede operar con matrices por medio de operadores y por medio de funciones. Se han
visto ya los operadores suma (+), producto (*) y traspuesta ('), así como la función invertir inv().
Los operadores matriciales de MATLAB son los siguientes:

+ adición o suma
– sustracción o resta
* multiplicación
' traspuesta
^ potenciación
\ división-izquierda
/ división-derecha
.* producto elemento a elemento
./ y .\ división elemento a elemento
.^ elevar a una potencia elemento a elemento

Estos operadores se aplican también a las variables o valores escalares, aunque con algunas diferen-
cias7. Todos estos operadores son coherentes con las correspondientes operaciones matriciales: no
se puede por ejemplo sumar matrices que no sean del mismo tamaño. Si los operadores no se usan
de modo correcto se obtiene un mensaje de error.

Los operadores anteriores se pueden aplicar también de modo mixto, es decir con un operando esca-
lar y otro matricial. En este caso la operación con el escalar se aplica a cada uno de los elementos de
la matriz. Considérese el siguiente ejemplo:

7 En términos de C++ se podría decir que son operadores sobrecargados, es decir, con varios significados distintos

dependiendo del contexto, es decir, de sus operandos.

Aprenda Matlab 7.0 como si estuviera en Primero página 26

>> A=[1 2; 3 4]
A =
 1 2
 3 4
>> A*2
ans =
 2 4
 6 8
>> A-4
ans =
 -3 -2
 -1 0

MATLAB utiliza el operador de división / para dividir por un escalar todos los elementos de una
matriz o un vector. Esto no constituye ninguna sorpresa. Sin embargo, el uso que se describe a con-
tinuación sí requiere más atención.

3.2.2. OPERADORES PARA LA RESOLUCIÓN DE SISTEMAS DE ECUACIONES LINEALES

MATLAB utiliza los operadores de división para la resolución de sistemas de ecuaciones lineales.
Por su gran importancia, estos operadores requieren una explicación detenida. Considérese el si-
guiente sistema de ecuaciones lineales,
 Ax = b (1)

donde x y b son vectores columna, y A una matriz cuadrada invertible. La resolución de este siste-
ma de ecuaciones se puede escribir en las 2 formas siguientes (¡Atención a la 2ª forma, basada en la
barra invertida (\)8, que puede resultar un poco extraña!):
 x = inv(A)*b (2a)
 x = A\b (2b)
Así pues, el operador división-izquierda por una matriz (barra invertida \) equivale a pre-multiplicar
por la inversa de esa matriz. En realidad este operador es más general y más inteligente de lo que
aparece en el ejemplo anterior: el operador división-izquierda es aplicable aunque la matriz no tenga
inversa e incluso no sea cuadrada, en cuyo caso la solución que se obtiene (por lo general) es la que
proporciona el método de los mínimos cuadrados. Cuando la matriz es triangular o simétrica apro-
vecha esta circunstancia para reducir el número de operaciones aritméticas. En algunos casos se
obtiene una solución con no más de r elementos distintos de cero, siendo r el rango de la matriz.
Esto puede estar basado en que la matriz se reduce a forma de escalón y se resuelve el sistema dan-
do valor cero a las variables libres o independientes. Por ejemplo, considérese el siguiente ejemplo
de matriz (1×2) que conduce a un sistema de infinitas soluciones:

>> A=[1 2], b=[2]
A =
 1 2
b =
 2
>> x=A\b
x =
 0
 1

que es la solución obtenida dando valor cero a la variable independiente x(1). Por otra parte, en el
caso de un sistema de ecuaciones redundante (o sobre-determinado) el resultado de MATLAB es el
punto más “cercano” -en el sentido de mínima norma del error- a las ecuaciones dadas (aunque no

8 En inglés, MATLAB denomina mldivide a este operador. Para más información, teclear help mldivide.

Capítulo 3: Operaciones con matrices y vectores página 27

cumpla exactamente ninguna de ellas). Véase el siguiente ejemplo de tres ecuaciones formadas por
una recta que no pasa por el origen y los dos ejes de coordenadas:

>> A=[1 2; 1 0; 0 1], b=[2 0 0]'
A =
 1 2
 1 0
 0 1
b =
 2
 0
 0
>> x=A\b, resto=A*x-b
x =
 0.3333
 0.6667
resto =
 -0.3333
 0.3333
 0.6667

Si la matriz es singular o está muy mal escalada, el operador \ da un aviso (warning), pero propor-
ciona una solución.

La “inteligencia” del operador barra invertida \ tiene un coste: MATLAB debe de emplear cierto
tiempo en determinar las características de la matriz: triangular, simétrica, etc. Si el usuario conoce
perfectamente y con seguridad las características de la matriz del sistema, lo mejor es utilizar la
función linsolve (ver sección 4.5.4, en la página 46), que no realiza ninguna comprobación y puede
obtener la máxima eficiencia.

Aunque no es una forma demasiado habitual, también se puede escribir un sistema de ecuaciones
lineales en la forma correspondiente a la traspuesta de la ecuación (1):

 yB = c (3)

donde y y c son vectores fila (c conocido). Si la matriz B es cuadrada e invertible, la solución de
este sistema se puede escribir en las formas siguientes:
 y = c*inv(B) (4a)
 y = c/B (4b)

En este caso, el operador división-derecha por una matriz (/) equivale a postmultiplicar por la in-
versa de la matriz. Si se traspone la ecuación (3) y se halla la solución aplicando el operador divi-
sión-izquierda se obtiene:
 y' = (B')\c' (5)

Comparando las expresiones (4b) y (5) se obtiene la relación entre los operadores división-izquierda
y división-derecha (MATLAB sólo tiene implementado el operador división-izquierda):
 c/B = ((B')\c')' (6)

3.2.3. OPERADORES ELEMENTO A ELEMENTO

En MATLAB existe también la posibilidad de aplicar elemento a elemento los operadores matricia-
les (*, ^, \ y /). Para ello basta precederlos por un punto (.). Por ejemplo:

>> [1 2 3 4]^2
??? Error using ==> ^
Matrix must be square.

Aprenda Matlab 7.0 como si estuviera en Primero página 28

>> [1 2 3 4].^2
ans =
 1 4 9 16

>> [1 2 3 4]*[1 -1 1 -1]
??? Error using ==> *
Inner matrix dimensions must agree.

>> [1 2 3 4].*[1 -1 1 -1]
ans =
 1 -2 3 -4

3.3. Tipos de datos
Ya se ha dicho que MATLAB es un programa preparado para trabajar con vectores y matrices. Co-
mo caso particular también trabaja con variables escalares (matrices de dimensión 1). MATLAB
trabaja siempre en doble precisión, es decir guardando cada dato en 8 bytes, con unas 15 cifras de-
cimales exactas. Ya se verá más adelante que también puede trabajar con cadenas de caracteres
(strings) y, desde la versión 5.0, también con otros tipos de datos: Matrices de más dos dimensio-
nes, matrices dispersas, vectores y matrices de celdas, estructuras y clases y objetos. Algunos de
estos tipos de datos más avanzados se verán en la última parte de este manual.

3.3.1. NÚMEROS REALES DE DOBLE PRECISIÓN

Los elementos constitutivos de vectores y matrices son números reales almacenados en 8 bytes (53
bits para la mantisa y 11 para el exponente de 2; entre 15 y 16 cifras decimales equivalentes). Es
importante saber cómo trabaja MATLAB con estos números y los casos especiales que presentan.

MATLAB mantiene una forma especial para los números muy grandes (más grandes que los que es
capaz de representar), que son considerados como infinito. Por ejemplo, obsérvese cómo responde
el programa al ejecutar el siguiente comando:

>> 1.0/0.0
Warning: Divide by zero
ans =
 Inf

Así pues, para MATLAB el infinito se representa como inf ó Inf. MATLAB tiene también una re-
presentación especial para los resultados que no están definidos como números. Por ejemplo, ejecú-
tense los siguientes comandos y obsérvense las respuestas obtenidas:

>> 0/0
Warning: Divide by zero
ans =
 NaN
>> inf/inf
ans =
 NaN

En ambos casos la respuesta es NaN, que es la abreviatura de Not a Number. Este tipo de respuesta,
así como la de Inf, son enormemente importantes en MATLAB, pues permiten controlar la fiabili-
dad de los resultados de los cálculos matriciales. Los NaN se propagan al realizar con ellos cual-
quier operación aritmética, en el sentido de que, por ejemplo, cualquier número sumado a un NaN
da otro NaN. MATLAB tiene esto en cuenta. Algo parecido sucede con los Inf.
MATLAB dispone de tres funciones útiles relacionadas con las operaciones de coma flotante. Estas
funciones, que no tienen argumentos, son las siguientes:

Capítulo 3: Operaciones con matrices y vectores página 29

eps devuelve la diferencia entre 1.0 y el número de coma flotante inmediatamente supe-
rior. Da una idea de la precisión o número de cifras almacenadas. En un PC, eps va-
le 2.2204e-016.

realmin devuelve el número más pequeño con que se puede trabajar (2.2251e-308)

realmax devuelve el número más grande con que se puede trabajar (1.7977e+308)

3.3.2. OTROS TIPOS DE VARIABLES: INTEGER, FLOAT Y LOGICAL

Como ya se ha comentado, por defecto MATLAB trabaja con variables de punto flotante y doble
precisión (double). Con estas variables pueden resolverse casi todos los problemas prácticos y con
frecuencia no es necesario complicarse la vida declarando variables de tipos distintos, como se hace
con cualquier otro lenguaje de programación. Sin embargo, en algunos casos es conveniente decla-
rar variables de otros tipos porque puede ahorrarse mucha memoria y pueden hacerse los cálculos
mucho más rápidamente.

MATLAB permite crear variables enteras con 1, 2, 4 y 8 bytes (8, 16, 32 y 64 bits). A su vez, estas
variables pueden tener signo o no tenerlo. Las variables con signo representan números en interva-
los "casi" simétricos respecto al 0; las variables sin signo representan número no negativos, desde el
0 al número máximo.

Los tipos de los enteros con signo son int8, int16, int32 e int64, y sin signo uint8, uint16, uint32 y
uint64. Para crear una variable entera de un tipo determinado se pueden utilizar sentencias como las
siguientes:

>> i=int32(100); % se crea un entero de 4 bytes con valor 100
>> j=zeros(100); i=int32(j); % se crea un entero i a partir de j
>> i=zeros(1000,1000,'int32'); % se crea una mariz 1000x1000 de enteros

Las funciones intmin('int64') e intmax('int64') permiten por ejemplo saber el valor del entero más
pequeño y más grande (en valor algebraico) que puede formarse con variables enteras de 64 bits:

>> disp([intmin('int64'), intmax('int64')])
 -9223372036854775808 9223372036854775807

La función isinteger(i) devuelve 1 si la variable i es entera y 0 en otro caso. La función class(i) de-
vuelve el tipo de variable que es i (int8, int16, ...), mientras que la función isa(i, 'int16') permite
saber exactamente si la variable i corresponde a un entero de 16 bits.

MATLAB dispone de dos tipos de variables reales o float: single y double, que ocupan respectiva-
mente 4 y 8 bytes. Por defecto se utilizan doubles. Las funciones single(x) y double(y) permiten
realizar conversiones entre ambos tipos de variables.

Las funciones realmin y realmax permiten saber los números double más pequeño y más grande
(en valor absoluto) que admite el computador. Para los correspondientes números de simple preci-
sión habría que utilizar realmin('single') y realmax('single'). La función isfloat(x) permite saber si
x es una variable real, de simple o doble precisión. Para saber exactamente de qué tipo de variable
se rata se pueden utilizar las funciones isa(x, 'single') ó isa(x, 'double'). Obsérvese el ejemplo si-
guiente, en el que se ve cómo con variables single se reduce el tiempo de CPU y la memoria:

>> n=1000; AA=rand(n); A=single(AA);
>> tic, Bs=inv(A); toc
Elapsed time is 1.985000 seconds.
>> tic, Bd=inv(AA); toc
Elapsed time is 4.296000 seconds.

Quizás las variables más interesantes –aparte de las variables por defecto, las double– sean las va-
riables logical, que sólo pueden tomar los valores true (1) y false (0). Las variables lógicas surgen

Aprenda Matlab 7.0 como si estuviera en Primero página 30

como resultado de los operadores relacionales (==, <, <=, >, >=, ~=, ver Apartado 3.6, en la página
38) y de muchas funciones lógicas como any y all que se aplican a vectores y matrices, y que se
verán en el Apartado 4.6, a partir de la página 46.

La función logical(A) produce una variable lógica, con el mismo número de elementos que A, con
valores 1 ó 0 según el correspondiente elementos de A sea distinto de cero o igual a cero.

Una de las aplicaciones más importantes de las variables lógicas es para separar o extraer los elemn-
tos de una matriz o vector que cumplen cierta condición, y operar luego selectivamente sobre dichos
elementos. Obsérvese, el siguiente ejemplo:

>> A=magic(4)
A =
 16 2 3 13
 5 11 10 8
 9 7 6 12
 4 14 15 1
>> j=A>10
j =
 1 0 0 1
 0 1 0 0
 0 0 0 1
 0 1 1 0
>> isa(j,'logical')
ans =
 1
>> A(j)=-10
A =
 -10 2 3 -10
 5 -10 10 8
 9 7 6 -10
 4 -10 -10 1

3.3.3. NÚMEROS COMPLEJOS: FUNCIÓN COMPLEX

En muchos cálculos matriciales los datos y/o los resultados no son reales sino complejos, con parte
real y parte imaginaria. MATLAB trabaja sin ninguna dificultad con números complejos. Para ver
como se representan por defecto los números complejos, ejecútense los siguientes comandos:

>> a=sqrt(-4)
a =
 0 + 2.0000i
>> 3 + 4j
ans =
 3.0000 + 4.0000i

En la entrada de datos de MATLAB se pueden utilizar indistintamente la i y la j para representar el
número imaginario unidad (en la salida, sin embargo, puede verse que siempre aparece la i). Si la i
o la j no están definidas como variables, puede intercalarse el signo (*). Esto no es posible en el
caso de que sí estén definidas, porque entonces se utiliza el valor de la variable. En general, cuando
se está trabajando con números complejos, conviene no utilizar la i como variable ordinaria, pues
puede dar lugar a errores y confusiones. Por ejemplo, obsérvense los siguientes resultados:

>> i=2
i =
 2
>> 2+3i
ans =
 2.0000 + 3.0000i
>> 2+3*i

Capítulo 3: Operaciones con matrices y vectores página 31

ans =
 8
>> 2+3*j
ans =
 2.0000 + 3.0000i

Cuando i y j son variables utilizadas para otras finalidades, como unidad imaginaria puede utilizar-
se también la función sqrt(-1), o una variable a la que se haya asignado el resultado de esta función.

La asignación de valores complejos a vectores y matrices desde teclado puede hacerse de las dos
formas, que se muestran en el ejemplo siguiente (conviene hacer antes clear i, para que i no esté
definida como variable; este comando se estudiará más adelante):

>> A = [1+2i 2+3i; -1+i 2-3i]
A =
 1.0000 + 2.0000i 2.0000 + 3.0000i
 -1.0000 + 1.0000i 2.0000 - 3.0000i
>> A = [1 2; -1 2] + [2 3; 1 -3]*I % En este caso el * es necesario
A =
 1.0000 + 2.0000i 2.0000 + 3.0000i
 -1.0000 + 1.0000i 2.0000 - 3.0000i

Puede verse que es posible definir las partes reales e imaginarias por separado. En este caso sí es
necesario utilizar el operador (*), según se muestra en el ejemplo anterior.

MATLAB dispone asimismo de la función complex, que crea un número complejo a partir de dos
argumentos que representan la parte real e imaginaria, como en el ejemplo siguiente:

>> complex(1,2)
ans =
 1.0000 + 2.0000i

Es importante advertir que el operador de matriz traspuesta ('), aplicado a matrices complejas, pro-
duce la matriz conjugada y traspuesta. Existe una función que permite hallar la matriz conjugada
(conj()) y el operador punto y apóstrofo (.') que calcula simplemente la matriz traspuesta.

3.3.4. CADENAS DE CARACTERES

MATLAB puede definir variables que contengan cadenas de caracteres. En MATLAB las cadenas
de texto van entre apóstrofos o comillas simples (Nótese que en C van entre comillas dobles: "cade-
na"). Por ejemplo, en MATLAB:

s = 'cadena de caracteres'

Las cadenas de texto tienen su más clara utilidad en temas que se verán más adelante y por eso se
difiere hasta entonces una explicación más detallada.

3.4. Variables y expresiones matriciales
Ya han aparecido algunos ejemplos de variables y expresiones matriciales. Ahora se va a tratar de
generalizar un poco lo visto hasta ahora.

Una variable es un nombre que se da a una entidad numérica, que puede ser una matriz, un vector o
un escalar. El valor de esa variable, e incluso el tipo de entidad numérica que representa, puede
cambiar a lo largo de una sesión de MATLAB o a lo largo de la ejecución de un programa. La for-
ma más normal de cambiar el valor de una variable es colocándola a la izquierda del operador de
asignación (=).

Una expresión de MATLAB puede tener las dos formas siguientes: primero, asignando su resultado
a una variable,

Aprenda Matlab 7.0 como si estuviera en Primero página 32

variable = expresión

y segundo evaluando simplemente el resultado del siguiente modo,
expresión

en cuyo caso el resultado se asigna automáticamente a una variable interna de MATLAB llamada
ans (de answer) que almacena el último resultado obtenido. Se considera por defecto que una ex-
presión termina cuando se pulsa intro. Si se desea que una expresión continúe en la línea siguiente,
hay que introducir tres puntos (...) antes de pulsar intro. También se pueden incluir varias expresio-
nes en una misma línea separándolas por comas (,) o puntos y comas (;).

Si una expresión termina en punto y coma (;) su resultado se calcula, pero no se escribe en pantalla.
Esta posibilidad es muy interesante, tanto para evitar la escritura de resultados intermedios, como
para evitar la impresión de grandes cantidades de números cuando se trabaja con matrices de gran
tamaño.

A semejanza de C, MATLAB distingue entre mayúsculas y minúsculas en los nombres de varia-
bles. Los nombres de variables deben empezar siempre por una letra y pueden constar de hasta 63
letras y números. La función namelengthmax permite preguntar al programa por este número
máximo de caracteres. El carácter guión bajo (_) se considera como una letra. A diferencia del len-
guaje C, no hace falta declarar las variables que se vayan a utilizar. Esto hace que se deba tener es-
pecial cuidado con no utilizar nombres erróneos en las variables, porque no se recibirá ningún aviso
del ordenador.

Cuando se quiere tener una relación de las variables que se han utilizado en una sesión de trabajo
se puede utilizar el comando who. Existe otro comando llamado whos que proporciona además in-
formación sobre el tamaño, la cantidad de memoria ocupada y el carácter real o complejo de cada
variable. Se sugiere utilizar de vez en cuando estos comandos en la sesión de MATLAB que se tie-
ne abierta. Esta misma información se puede obtener gráficamente con el Workspace Browser, que
aparece con el comando View/Workspace o activando la ventana correspondiente si estaba abierto.

El comando clear tiene varias formas posibles:

clear sin argumentos, clear elimina todas las variables creadas previamente (ex-
cepto las variables globales).

clear A, b borra las variables indicadas.
clear global borra las variables globales.
clear functions borra las funciones.
clear all borra todas las variables, incluyendo las globales, y las funciones.

3.5. Otras formas de definir matrices
MATLAB dispone de varias formas de definir matrices. El introducirlas por teclado sólo es práctico
en casos de pequeño tamaño y cuando no hay que repetir esa operación muchas veces. Recuérdese
que en MATLAB no hace falta definir el tamaño de una matriz. Las matrices toman tamaño al ser
definidas y este tamaño puede ser modificado por el usuario mediante adición y/o borrado de filas y
columnas. A continuación se van a ver otras formas más potentes y generales de definir y/o modifi-
car matrices.

3.5.1. TIPOS DE MATRICES PREDEFINIDOS

Existen en MATLAB varias funciones orientadas a definir con gran facilidad matrices de tipos par-
ticulares. Algunas de estas funciones son las siguientes:

eye(4) forma la matriz unidad de tamaño (4×4)

Capítulo 3: Operaciones con matrices y vectores página 33

zeros(3,5) forma una matriz de ceros de tamaño (3×5)
zeros(4) ídem de tamaño (4×4)
ones(3) forma una matriz de unos de tamaño (3×3)
ones(2,4) idem de tamaño (2×4)

linspace(x1,x2,n) genera un vector con n valores igualmente espaciados entre x1 y x2
logspace(d1,d2,n) genera un vector con n valores espaciados logarítmicamente entre

10^d1 y 10^d2. Si d2 es pi9, los puntos se generan entre 10^d1 y pi
rand(3) forma una matriz de números aleatorios entre 0 y 1, con distribución

uniforme, de tamaño (3×3)
rand(2,5) idem de tamaño (2×5)
randn(4) forma una matriz de números aleatorios de tamaño (4×4), con distribu-

ción normal, de valor medio 0 y varianza 1.

magic(4) crea una matriz (4×4) con los números 1, 2, ... 4*4, con la propiedad de
que todas las filas y columnas suman lo mismo

hilb(5) crea una matriz de Hilbert de tamaño (5×5). La matriz de Hilbert es una
matriz cuyos elementos (i,j) responden a la expresión (1/(i+j-1)). Esta es
una matriz especialmente difícil de manejar por los grandes errores nu-
méricos a los que conduce

invhilb(5) crea directamente la inversa de la matriz de Hilbert

kron(x,y) produce una matriz con todos los productos de los elementos del vector
x por los elementos del vector y. Equivalente a x'*y, donde x e y son
vectores fila

compan(pol) construye una matriz cuyo polinomio característico tiene como coefi-
cientes los elementos del vector pol (ordenados de mayor grado a me-
nor)

vander(v) construye la matriz de Vandermonde a partir del vector v (las columnas
son las potencias de los elementos de dicho vector)

Existen otras funciones para crear matrices de tipos particulares. Con Help/Matlab Help se puede
obtener información sobre todas las funciones disponibles en MATLAB, que aparecen agrupadas
por categorías o por orden alfabético. En la categoría Mathematics aparecen la mayor parte de las
funciones estudiadas en este apartado.

3.5.2. FORMACIÓN DE UNA MATRIZ A PARTIR DE OTRAS

MATLAB ofrece también la posibilidad de crear una matriz a partir de matrices previas ya defini-
das, por varios posibles caminos:

– recibiendo alguna de sus propiedades (como por ejemplo el tamaño),

– por composición de varias submatrices más pequeñas,

– modificándola de alguna forma.

A continuación se describen algunas de las funciones que crean una nueva matriz a partir de otra o
de otras, comenzando por dos funciones auxiliares:

9 pi es una variable predefinida en MATLAB, que como es fácil suponer representa el número π.

Aprenda Matlab 7.0 como si estuviera en Primero página 34

[m,n]=size(A) devuelve el número de filas y de columnas de la matriz A. Si la matriz es
cuadrada basta recoger el primer valor de retorno

n=length(x) calcula el número de elementos de un vector x
zeros(size(A)) forma una matriz de ceros del mismo tamaño que una matriz A previamen-

te creada
ones(size(A)) ídem con unos
A=diag(x) forma una matriz diagonal A cuyos elementos diagonales son los elemen-

tos de un vector ya existente x
x=diag(A) forma un vector x a partir de los elementos de la diagonal de una matriz ya

existente A
diag(diag(A)) crea una matriz diagonal a partir de la diagonal de la matriz A
blkdiag(A,B) crea una matriz diagonal de submatrices a partir de las matrices que se le

pasan como argumentos
triu(A) forma una matriz triangular superior a partir de una matriz A (no tiene por

qué ser cuadrada). Con un segundo argumento puede controlarse que se
mantengan o eliminen más diagonales por encima o debajo de la diagonal
principal.

tril(A) ídem con una matriz triangular inferior
rot90(A,k) Gira k*90 grados la matriz rectangular A en sentido antihorario. k es un

entero que puede ser negativo. Si se omite, se supone k=1
flipud(A) halla la matriz simétrica de A respecto de un eje horizontal
fliplr(A) halla la matriz simétrica de A respecto de un eje vertical
reshape(A,m,n) Cambia el tamaño de la matriz A devolviendo una matriz de tamaño m×n

cuyas columnas se obtienen a partir de un vector formado por las columnas
de A puestas una a continuación de otra. Si la matriz A tiene menos de
m×n elementos se produce un error.

Un caso especialmente interesante es el de crear una nueva matriz componiendo como submatrices
otras matrices definidas previamente. A modo de ejemplo, ejecútense las siguientes líneas de co-
mandos y obsérvense los resultados obtenidos:

>> A=rand(3)
>> B=diag(diag(A))
>> C=[A, eye(3); zeros(3), B]

En el ejemplo anterior, la matriz C de tamaño (6×6) se forma por composición de cuatro matrices
de tamaño (3×3). Al igual que con simples escalares, las submatrices que forman una fila se separan
con blancos o comas, mientras que las diferentes filas se separan entre sí con intros o puntos y co-
mas. Los tamaños de las submatrices deben de ser coherentes.

3.5.3. DIRECCIONAMIENTO DE VECTORES Y MATRICES A PARTIR DE VECTORES

Los elementos de un vector x se pueden direccionar a partir de los de otro vector v. En este caso,
x(v) equivale al vector x(v(1)), x(v(2)), ... Considérese el siguiente ejemplo:

>> v=[1 3 4]
v =
 1 3 4
>> x=rand(1,6)
x =
 0.5899 0.4987 0.7351 0.9231 0.1449 0.9719
>> x(v)
ans =
 0.5899 0.7351 0.9231

Capítulo 3: Operaciones con matrices y vectores página 35

De forma análoga, los elementos de una matriz A pueden direccionarse a partir de los elementos de
dos vectores f y c. Véase por ejemplo:

>> f=[2 4]; c=[1 2];
>> A=magic(4)
A =
 16 2 3 13
 5 11 10 8
 9 7 6 12
 4 14 15 1
>> A(f,c)
ans =
 5 11
 4 14

El siguiente ejemplo –continuación del anterior– permite comprobar cómo los elementos de una
matriz se pueden direccionar con un sólo índice, considerando que las columnas de la matriz están
una a continuación de otra formando un vector:

>> f=[1 3 5 7];
>> A(f), A(5), A(6)
ans =
 16 9 2 7
ans =
 2
ans =
 11

Más adelante se verá que esta forma de extraer elementos de un vector y/o de una matriz tiene
abundantes aplicaciones, por ejemplo la de modificar selectivamente esos elementos.

3.5.4. OPERADOR DOS PUNTOS (:)

Este operador es muy importante en MATLAB y puede usarse de varias formas. Se sugiere al lector
que practique mucho sobre los ejemplos contenidos en este apartado, introduciendo todas las modi-
ficaciones que se le ocurran y haciendo pruebas abundantes (¡Probar es la mejor forma de apren-
der!).

Para empezar, defínase un vector x con el siguiente comando:
>> x=1:10
x =
 1 2 3 4 5 6 7 8 9 10

En cierta forma se podría decir que el operador (:) representa un rango: en este caso, los números
enteros entre el 1 y el 10. Por defecto el incremento es 1, pero este operador puede también utilizar-
se con otros valores enteros y reales, positivos o negativos. En este caso el incremento va entre el
valor inferior y el superior, en las formas que se muestran a continuación:

>> x=1:2:10
x =
 1 3 5 7 9
>> x=1:1.5:10
x =
 1.0000 2.5000 4.0000 5.5000 7.0000 8.5000 10.0000
>> x=10:-1:1
x =
 10 9 8 7 6 5 4 3 2 1

Puede verse que, por defecto, este operador produce vectores fila. Si se desea obtener un vector
columna basta trasponer el resultado. El siguiente ejemplo genera una tabla de funciones seno y

Aprenda Matlab 7.0 como si estuviera en Primero página 36

coseno. Ejecútese y obsérvese el resultado (recuérdese que con (;) después de un comando el resul-
tado no aparece en pantalla).

>> x=[0.0:pi/50:2*pi]';
>> y=sin(x); z=cos(x);
>> [x y z]

El operador dos puntos (:) es aún más útil y potente –y también más complicado– con matrices. A
continuación se va a definir una matriz A de tamaño 6×6 y después se realizarán diversas operacio-
nes sobre ella con el operador (:).

>> A=magic(6)
A =
 35 1 6 26 19 24
 3 32 7 21 23 25
 31 9 2 22 27 20
 8 28 33 17 10 15
 30 5 34 12 14 16
 4 36 29 13 18 11

Recuérdese que MATLAB accede a los elementos de una matriz por medio de los índices de fila y
de columna encerrados entre paréntesis y separados por una coma. Por ejemplo:

>> A(2,3)
ans =
 7

El siguiente comando extrae los 4 primeros elementos de la 6ª fila:
>> A(6, 1:4)
ans =
 4 36 29 13

Los dos puntos aislados representan "todos los elementos". Por ejemplo, el siguiente comando ex-
trae todos los elementos de la 3ª fila:

>> A(3, :)
ans =
 31 9 2 22 27 20

Para acceder a la última fila o columna puede utilizarse la palabra end, en lugar del número corres-
pondiente. Por ejemplo, para extraer la sexta fila (la última) de la matriz:

>> A(end, :)
ans =
 4 36 29 13 18 11

El siguiente comando extrae todos los elementos de las filas 3, 4 y 5:
>> A(3:5,:)
ans =
 31 9 2 22 27 20
 8 28 33 17 10 15
 30 5 34 12 14 16

Se pueden extraer conjuntos disjuntos de filas utilizando corchetes []. Por ejemplo, el siguiente
comando extrae las filas 1, 2 y 5:

>> A([1 2 5],:)
ans =
 35 1 6 26 19 24
 3 32 7 21 23 25
 30 5 34 12 14 16

Capítulo 3: Operaciones con matrices y vectores página 37

En los ejemplos anteriores se han extraído filas y no columnas por motivos del espacio ocupado por
el resultado en la hoja de papel. Es evidente que todo lo que se dice para filas vale para columnas y
viceversa: basta cambiar el orden de los índices.

El operador dos puntos (:) puede utilizarse en ambos lados del operador (=). Por ejemplo, a conti-
nuación se va a definir una matriz identidad B de tamaño 6×6 y se van a reemplazar filas de B por
filas de A. Obsérvese que la siguiente secuencia de comandos sustituye las filas 2, 4 y 5 de B por las
filas 1, 2 y 3 de A,

>> B=eye(size(A));
>> B([2 4 5],:)=A(1:3,:)
B =
 1 0 0 0 0 0
 35 1 6 26 19 24
 0 0 1 0 0 0
 3 32 7 21 23 25
 31 9 2 22 27 20
 0 0 0 0 0 1

Se pueden realizar operaciones aún más complicadas, tales como la siguiente10:
>> B=eye(size(A));
>> B(1:2,:)=[0 1; 1 0]*B(1:2,:)

Como nuevo ejemplo, se va a ver la forma de invertir el orden de los elementos de un vector:
>> x=rand(1,5)
x =
 0.9103 0.7622 0.2625 0.0475 0.7361
>> x=x(5:-1:1)
x =
 0.7361 0.0475 0.2625 0.7622 0.9103

Obsérvese que por haber utilizado paréntesis –en vez de corchetes– los valores generados por el
operador (:) afectan a los índices del vector y no al valor de sus elementos.

Para invertir el orden de las columnas de una matriz se puede hacer lo siguiente:
>> A=magic(3)
A =
 8 1 6
 3 5 7
 4 9 2
>> A(:,3:-1:1)
ans =
 6 1 8
 7 5 3
 2 9 4

aunque hubiera sido más fácil utilizar la función fliplr(A), que es específica para ello.
Finalmente, hay que decir que A(:) representa un vector columna con las columnas de A una detrás
de otra.

3.5.5. MATRIZ VACÍA A[]. BORRADO DE FILAS O COLUMNAS

Para MATLAB una matriz definida sin ningún elemento entre los corchetes es una matriz que exis-
te, pero que está vacía, o lo que es lo mismo que tiene dimensión cero. Considérense los siguientes
ejemplos de aplicación de las matrices vacías:

10 Se sustituyen las dos primeras filas de B por el producto de dichas filas por una matriz de permutación.

Aprenda Matlab 7.0 como si estuviera en Primero página 38

>> A=magic(3)
A =
 8 1 6
 3 5 7
 4 9 2
>> B=[]
B =
 []
>> exist(B)
ans =
 []
>> isempty(B)
ans =
 1
>> A(:,3)=[]
A =
 8 1
 3 5
 4 9

Las funciones exist() e isempty() permiten chequear si una variable existe y si está vacía. En el úl-
timo ejemplo se ha eliminado la 3ª columna de A asignándole la matriz vacía.

3.5.6. DEFINICIÓN DE VECTORES Y MATRICES A PARTIR DE UN FICHERO

MATLAB acepta como entrada un fichero nombre.m (siempre con extensión .m) que contiene ins-
trucciones y/o funciones. Dicho fichero se llama desde la línea de comandos tecleando simplemente
su nombre, sin la extensión. A su vez, un fichero *.m puede llamar a otros ficheros *.m, e incluso
puede llamarse a sí mismo (funciones recursivas). Las variables definidas dentro de un fichero de
comandos *.m que se ejecuta desde la línea de comandos son variables del espacio de trabajo base,
esto es, pueden ser accedidas desde fuera de dicho fichero; no sucede lo mismo si el fichero *.m
corresponde a una función. Si un fichero de comandos se llama desde una función, las variables que
se crean pertenecen al espacio de trabajo de dicha función.

Como ejemplo se puede crear un fichero llamado unidad.m que construya una matriz unidad de
tamaño 3×3 llamada U33 en un directorio llamado c:\matlab. Este fichero deberá contener la línea
siguiente:

U33=eye(3)

Desde MATLAB llámese al comando unidad y obsérvese el resultado. Entre otras razones, es muy
importante utilizar ficheros de comandos para poder utilizar el Debugger y para evitar teclear mu-
chas veces los mismos datos, sentencias o expresiones.

3.5.7. DEFINICIÓN DE VECTORES Y MATRICES MEDIANTE FUNCIONES Y DECLARACIONES

También se pueden definir las matrices y vectores por medio de funciones de librería (las que se
verán en la siguiente sección) y de funciones programadas por el usuario (que también se verán
más adelante).

3.6. Operadores relacionales
El lenguaje de programación de MATLAB dispone de los siguientes operadores relacionales:

< menor que
> mayor que
<= menor o igual que
>= mayor o igual que

Capítulo 3: Operaciones con matrices y vectores página 39

== igual que
~= distinto que11

Obsérvese que, salvo el último de ellos, coinciden con los correspondientes operadores relacionales
de C. Sin embargo, ésta es una coincidencia más bien formal. En MATLAB los operadores relacio-
nales pueden aplicarse a vectores y matrices, y eso hace que tengan un significado especial.

Al igual que en C, si una comparación se cumple el resultado es 1 (true), mientras que si no se
cumple es 0 (false). Recíprocamente, cualquier valor distinto de cero es considerado como true y el
cero equivale a false. La diferencia con C está en que cuando los operadores relacionales de MA-
TLAB se aplican a dos matrices o vectores del mismo tamaño, la comparación se realiza elemento
a elemento, y el resultado es otra matriz de unos y ceros del mismo tamaño, que recoge el resulta-
do de cada comparación entre elementos. Considérese el siguiente ejemplo como ilustración de lo
que se acaba de decir:

>> A=[1 2;0 3]; B=[4 2;1 5];
>> A==B
ans =
 0 1
 0 0
>> A~=B
ans =
 1 0
 1 1

3.7. Operadores lógicos
Los operadores lógicos de MATLAB son los siguientes:

& and (función equivalente: and(A,B)). Se evalúan siempre ambos operandos, y el
resultado es true sólo si ambos son true.

&& and breve: si el primer operando es false ya no se evalúa el segundo, pues el resul-
tado final ya no puede ser más que false.

| or (función equivalente: or(A,B)). Se evalúan siempre ambos operandos, y el re-
sultado es false sólo si ambos son false.

|| or breve: si el primer operando es true ya no se evalúa el segundo, pues el resulta-
do final no puede ser más que true.

~ negación lógica (función equivalente: not(A))
xor(A,B) realiza un "or exclusivo", es decir, devuelve 0 en el caso en que ambos sean 1 ó

ambos sean 0.

Los operadores lógicos se combinan con los relacionales para poder comprobar el cumplimiento de
condiciones múltiples. Más adelante se verán otros ejemplos y ciertas funciones de las que dispone
MATLAB para facilitar la aplicación de estos operadores a vectores y matrices.

Los operadores lógicos breves (&&) y (||) se utilizan para simplificar las operaciones de compara-
ción evitando operaciones innecesarias, pero también para evitar ciertos errores que se producirían
en caso de evaluar incondicionalmente el segundo argumento. Considérese por ejemplo la siguiente
sentencia, que evita una división por cero:

r = (b~=0) && (a/b>0);

11 El carácter (~) se obtiene en los PCs pulsando sucesivamente las teclas 1, 2 y 6 manteniendo Alt pulsada.

Aprenda Matlab 7.0 como si estuviera en Primero página 40

4. FUNCIONES DE LIBRERÍA
MATLAB tiene un gran número de funciones incorporadas. Algunas son funciones intrínsecas,
esto es, funciones incorporadas en el propio código ejecutable del programa. Estas funciones son
particularmente rápidas y eficientes. Existen además funciones definidas en ficheros *.m y *.mex12
que vienen con el propio programa o que han sido aportadas por usuarios del mismo. Estas funcio-
nes extienden en gran manera las posibilidades del programa.

MATLAB dispone también de ficheros *.p, que son los ficheros *.m pre-compilados con la función
pcode. Se verán más adelante.

Recuérdese que para que MATLAB encuentre una determinada función de usuario el correspon-
diente fichero-M debe estar en el directorio actual o en uno de los directorios del search path.

4.1. Características generales de las funciones de MATLAB
El concepto de función en MATLAB es semejante al de C y al de otros lenguajes de programación,
aunque con algunas diferencias importantes. Al igual que en C, una función tiene nombre, valor de
retorno y argumentos. Una función se llama utilizando su nombre en una expresión o utilizándolo
como un comando más. Las funciones se pueden definir en ficheros de texto *.m en la forma que se
verá más adelante. Considérense los siguientes ejemplos de llamada a funciones:

>> [maximo, posmax] = max(x);
>> r = sqrt(x^2+y^2) + eps;
>> a = cos(alfa) - sin(alfa);

donde se han utilizado algunas funciones matemáticas bien conocidas como el cálculo del valor
máximo, el seno, el coseno y la raíz cuadrada. Los nombres de las funciones se han puesto en negri-
ta. Los argumentos de cada función van a continuación del nombre entre paréntesis (y separados
por comas si hay más de uno). Los valores de retorno son el resultado de la función y sustituyen a
ésta en la expresión donde la función aparece.

Una diferencia importante con otros lenguajes es que en MATLAB las funciones pueden tener valo-
res de retorno matriciales múltiples (ya se verá que pueden recogerse en variables ad hoc todos o
sólo parte de estos valores de retorno), como en el primero de los ejemplos anteriores. En este caso
se calcula el elemento de máximo valor en un vector, y se devuelven dos valores: el valor máximo y
la posición que ocupa en el vector. Obsérvese que los 2 valores de retorno se recogen entre corche-
tes, separados por comas.

Una característica de MATLAB es que las funciones que no tienen argumentos no llevan paréntesis,
por lo que a simple vista no siempre son fáciles de distinguir de las simples variables. En la segunda
línea de los ejemplos anteriores, eps es una función sin argumentos, que devuelve la diferencia entre
1.0 y el número de coma flotante inmediatamente superior. En lo sucesivo el nombre de la función
irá seguido de paréntesis si interesa resaltar que la función espera que se le pase uno o más argu-
mentos.

Los nombres de las funciones de MATLAB no son palabras reservadas del lenguaje. Es posible
crear una variable llamada sin o cos, que ocultan las funciones correspondientes. Para poder acceder
a las funciones hay que eliminar (clear) las variables del mismo nombre que las ocultan, o bien
haber definido previamente una referencia a función (function handle). Las referencias a función
se estudiarán en el apartado 6.4, a partir de la página 72.

MATLAB permite que una función tenga un número variable de argumentos y valores de retorno,
determinado sólo en tiempo de ejecución. Más adelante se verá cómo se hace esto.

12 Los ficheros *.mex son ficheros de código ejecutable.

Capítulo 4: Funciones de librería página 41

MATLAB tiene diversos tipos de funciones. A continuación se enumeran los tipos de funciones
más importantes, clasificadas según su finalidad:

1.- Funciones matemáticas elementales.
2.- Funciones especiales.
3.- Funciones matriciales elementales.
4.- Funciones matriciales específicas.
5.- Funciones para la descomposición y/o factorización de matrices.
6.- Funciones para análisis estadístico de datos.
7.- Funciones para análisis de polinomios.
8.- Funciones para integración de ecuaciones diferenciales ordinarias.
9.- Resolución de ecuaciones no-lineales y optimización.
10.- Integración numérica.
11.- Funciones para procesamiento de señal.

A continuación se enumeran algunas características generales de todas las funciones de MATLAB:

– Los argumentos actuales13 de estas funciones pueden ser expresiones y también llamadas a
otra función.

– Las funciones de MATLAB nunca devuelven modificadas las variables que se pasan como
argumentos, a no ser que se incluyan también como valores de retorno. Si el usuario las modi-
fica dentro de la función, previamente se sacan copias de esas variables (se modifican las co-
pias, no las variables originales). Se podría decir que los argumentos de las funciones de MA-
TLAB siempre se pasan por valor, nunca por referencia.

– MATLAB admite valores de retorno matriciales múltiples. Por ejemplo, en el comando:
>> [V, D] = eig(A)

 la función eig() calcula los valores y vectores propios de la matriz cuadrada A. Los vectores
propios se devuelven como columnas de la matriz V, mientras que los valores propios son los
elementos de la matriz diagonal D. En los ejemplos siguientes:
>> [xmax, imax] = max(x)

>> xmax = max(x)

 puede verse que la misma función max() puede ser llamada recogiendo dos valores de retorno
(el máximo elemento de un vector y la posición que ocupa) o un sólo valor de retorno (el
máximo elemento).

– Las operaciones de suma y/o resta de una matriz con un escalar consisten en sumar y/o restar
el escalar a todos los elementos de la matriz.

– Recuérdese que tecleando help nombre_funcion se obtiene de inmediato información sobre la
función de ese nombre. En el Help Desk aparecen enlaces a “Functions - By Cathegory” y
“Functions – Alphabetical List”, en donde aparecen relaciones completas de las funciones
disponibles en MATLAB.

4.2. Equivalencia entre comandos y funciones
Existe una equivalencia entre las funciones y los comandos con argumentos de MATLAB. Así, un
comando en la forma,

>> comando arg1 arg2

13 Los argumentos actuales son los que se utilizan en la llamada de la función

Aprenda Matlab 7.0 como si estuviera en Primero página 42

es equivalente a una función con el mismo nombre que el comando a la que los argumentos se le
pasan como cadenas de caracteres,

>> comando('arg1', 'arg2')

Esta dualidad entre comandos y funciones es sobre todo útil en programación, porque permite
“construir” los argumentos con las operaciones propias de las cadenas de caracteres.

4.3. Funciones matemáticas elementales que operan de modo escalar
Estas funciones, que comprenden las funciones matemáticas trascendentales y otras funciones bási-
cas, cuando se aplican a una matriz actúan sobre cada elemento de la matriz como si se tratase de un
escalar. Por tanto, se aplican de la misma forma a escalares, vectores y matrices. Algunas de las
funciones de este grupo son las siguientes:

sin(x) seno
cos(x) coseno
tan(x) tangente
asin(x) arco seno
acos(x) arco coseno
atan(x) arco tangente (devuelve un ángulo entre -π/2 y +π/2)
atan2(x) arco tangente (devuelve un ángulo entre -π y +π); se le pasan 2 argumentos,

proporcionales al seno y al coseno
sinh(x) seno hiperbólico
cosh(x) coseno hiperbólico
tanh(x) tangente hiperbólica
asinh(x) arco seno hiperbólico
acosh(x) arco coseno hiperbólico
atanh(x) arco tangente hiperbólica
log(x) logaritmo natural
log10(x) logaritmo decimal
exp(x) función exponencial
sqrt(x) raíz cuadrada
sign(x) devuelve -1 si <0, 0 si =0 y 1 si >0. Aplicada a un número complejo, devuelve

un vector unitario en la misma dirección
rem(x,y) resto de la división (2 argumentos que no tienen que ser enteros)
mod(x,y) similar a rem (Ver diferencias con el Help)
round(x) redondeo hacia el entero más próximo
fix(x) redondea hacia el entero más próximo a 0
floor(x) valor entero más próximo hacia -∞
ceil(x) valor entero más próximo hacia +∞
gcd(x) máximo común divisor
lcm(x) mínimo común múltiplo
real(x) partes reales
imag(x) partes imaginarias
abs(x) valores absolutos
angle(x) ángulos de fase

Capítulo 4: Funciones de librería página 43

4.4. Funciones que actúan sobre vectores
Las siguientes funciones sólo actúan sobre vectores (no sobre matrices, ni sobre escalares):

[xm,im]=max(x) máximo elemento de un vector. Devuelve el valor máximo xm y la posi-
ción que ocupa im

min(x) mínimo elemento de un vector. Devuelve el valor mínimo y la posición
que ocupa

sum(x) suma de los elementos de un vector
cumsum(x) devuelve el vector suma acumulativa de los elementos de un vector (cada

elemento del resultado es una suma de elementos del original)
mean(x) valor medio de los elementos de un vector
std(x) desviación típica
prod(x) producto de los elementos de un vector
cumprod(x) devuelve el vector producto acumulativo de los elementos de un vector
[y,i]=sort(x) ordenación de menor a mayor de los elementos de un vector x. Devuelve el

vector ordenado y, y un vector i con las posiciones iniciales en x de los
elementos en el vector ordenado y.

En realidad estas funciones se pueden aplicar también a matrices, pero en ese caso se aplican por
separado a cada columna de la matriz, dando como valor de retorno un vector resultado de aplicar
la función a cada columna de la matriz considerada como vector. Si estas funciones se quieren apli-
car a las filas de la matriz basta aplicar dichas funciones a la matriz traspuesta.

4.5. Funciones que actúan sobre matrices
Las siguientes funciones exigen que el/los argumento/s sean matrices. En este grupo aparecen algu-
nas de las funciones más útiles y potentes de MATLAB. Se clasificarán en varios subgrupos:

4.5.1. FUNCIONES MATRICIALES ELEMENTALES:

B = A' calcula la traspuesta (conjugada) de la matriz A
B = A.' calcula la traspuesta (sin conjugar) de la matriz A
v = poly(A) devuelve un vector v con los coeficientes del polinomio característico de la

matriz cuadrada A
t = trace(A) devuelve la traza t (suma de los elementos de la diagonal) de una matriz

cuadrada A
[m,n] = size(A) devuelve el número de filas m y de columnas n de una matriz rectangular A
n = size(A) devuelve el tamaño de una matriz cuadrada A
nf = size(A,1) devuelve el número de filas de A
nc = size(A,2) devuelve el número de columnas de A

4.5.2. FUNCIONES MATRICIALES ESPECIALES

Las funciones exp(), sqrt() y log() se aplican elemento a elemento a las matrices y/o vectores que se
les pasan como argumentos. Existen otras funciones similares que tienen también sentido cuando se
aplican a una matriz como una única entidad. Estas funciones son las siguientes (se distinguen por-
que llevan una "m" adicional en el nombre):

expm(A) si A=XDX', expm(A) = X*diag(exp(diag(D)))*X'
sqrtm(A) devuelve una matriz que multiplicada por sí misma da la matriz A
logm() es la función recíproca de expm(A)

Aunque no pertenece a esta familia de funciones, se puede considerar que el operador potencia (^)
está emparentado con ellas. Así, es posible decir que:

Aprenda Matlab 7.0 como si estuviera en Primero página 44

A^n está definida si A es cuadrada y n un número real. Si n es entero, el re-
sultado se calcula por multiplicaciones sucesivas. Si n es real, el resul-
tado se calcula como: A^n=X*D.^n*X' siendo [X,D]=eig(A)

4.5.3. FUNCIONES DE FACTORIZACIÓN Y/O DESCOMPOSICIÓN MATRICIAL

A su vez este grupo de funciones se puede subdividir en 4 subgrupos:

– Funciones basadas en la factorización triangular (eliminación de Gauss):

[L,U] = lu(A) descomposición de Crout (A = LU) de una matriz. La matriz L es una
permutación de una matriz triangular inferior (dicha permutación es conse-
cuencia del pivotamiento por columnas utilizado en la factorización)

B = inv(A) calcula la inversa de A. Equivale a B=inv(U)*inv(L)
d = det(A) devuelve el determinante d de la matriz cuadrada A. Equivale a

d=det(L)*det(U)
E = rref(A) reducción a forma de escalón (mediante la eliminación de Gauss con pivo-

tamiento por columnas, haciendo ceros también encima de los pivots) de
una matriz rectangular A

[E,xc] = rref(A) reducción a forma de escalón con un vector xc que da información sobre
una posible base del espacio de columnas de A

U = chol(A) descomposición de Cholesky de matriz simétrica y positivo-definida. Sólo
se utiliza la diagonal y la parte triangular superior de A. El resultado es una
matriz triangular superior tal que A = U'*U

c = rcond(A) devuelve una estimación del recíproco de la condición numérica de la ma-
triz A basada en la norma-1. Si el resultado es próximo a 1 la matriz A está
bien condicionada; si es próximo a 0 no lo está.

– Funciones basadas en el cálculo de valores y vectores propios:

[X,D] = eig(A) valores propios (diagonal de D) y vectores propios (columnas de X) de una
matriz cuadrada A. Con frecuencia el resultado es complejo (si A no es
simétrica)

[X,D] = eig(A,B) valores propios (diagonal de D) y vectores propios (columnas de X) de dos
matrices cuadradas A y B (Ax = λBx). Los vectores propios están normali-
zados de modo que X'*B*X=I. Cuando A es simétrica y B es simétrica y
definida-positiva se puede utilizar [X,D] = eig(A,B,'chol').

– Funciones basadas en la descomposición QR:

[Q,R] = qr(A) descomposición QR de una matriz rectangular. Se utiliza para sistemas con
más ecuaciones que incógnitas. Q es una matriz ortogonal, es decir, es
cuadrada aunque A no lo sea (m>n). No se garantiza que los elementos di-
agonales de R sean positivos, lo cual crea dificultades en algunos proble-
mas (esa factorización no coincide con la de Gram-Schmidt).

[Q,R] = qr(A,0) similar a la anterior, pero con Q del mismo tamaño que A, es decir, sin
completar una base ortonormal cuando m>n.

[Q,R,E]=qr(A) factorización QR con pivotamiento por columnas. La matriz E es una ma-
triz de permutación tal que A*E=Q*R. La matriz E se determina de modo
que los elementos de abs(diag(R)) son decrecientes.

B = null(A) devuelve una base ortonormal del subespacio nulo (kernel, o conjunto de
vectores x tales que Ax = 0) de la matriz rectangular A, calculada mediante
la descomposición de valores singulares. Las columnas de B son ortonor-
males: B'*B=I.

Capítulo 4: Funciones de librería página 45

B = null(A,'r') devuelve una base del subespaco nulo de A calculada a partir de la forma
de escalón reducida. Las columnas de B no son ortonormales y se obtienen
alternativamente dando valor cero a todas las variables libres excepto a una
a la que se da valor unidad.

Q = orth(A) las columnas de Q son una base ortonormal del espacio de columnas de A.
El número de columnas de Q es el rango de A.

– Funciones basadas en la descomposición de valores singulares

[U,D,V] = svd(A) descomposición de valor singular de una matriz rectangular (A=U*D*V').
U y V son matrices ortonormales. D es diagonal m×n (mismo tamaño que
A) y contiene los valores singulares.

B = pinv(A) calcula la pseudo-inversa de una matriz rectangular A.
r = rank(A) calcula el rango r de una matriz rectangular A.
nor = norm(A) calcula la norma-2 de una matriz (el mayor valor singular).
nor = norm(A,2) lo mismo que la anterior.
nor = normest(A) calcula de forma aproximada la norma-2 con menos operaciones aritméti-

cas que la función norm.
c = cond(A) condición numérica sub-2 de la matriz A. Es el cociente entre el máximo y

el mínimo valor singular. La condición numérica da una idea de los errores
que se obtienen al resolver un sistema de ecuaciones lineales con dicha
matriz: su logaritmo indica el número de cifras significativas que se pier-
den. Si A es grande el cálculo es laborioso.

c = condest(A) estimación por defecto de la condición numérica de A con la norma-1. Esta
función es mucho más económica que cond.

– Cálculo del rango, normas y condición numérica:

 Existen varias formas de realizar estos cálculos, con distintos niveles de esfuerzo de cálculo y
de precisión en el resultado.

 El rango se calcula implícitamente (sin que el usuario lo pida) al ejecutar las funciones
rref(A), orth(A), null(A) y pinv(A). Con rref(A) el rango se calcula como el número de filas
diferentes de cero; con orth(A) y null(A) –basadas ambas en la descomposición QR– el rango
es el número de columnas del resultado (o n menos el número de columnas del resultado).
Con pinv(A) se utiliza la descomposición de valor singular, que es el método más fiable y más
caro en tiempo de cpu. La función rank(A) está basada en pinv(A).

 Normas de matrices:

norm(A) norma-2, es decir, máximo valor singular de A, max(svd(A)).
normest(A) calcula una estimación o aproximación de la norma-2. Útil para matrices

grandes en las que norm(A) necesita demasiado tiempo
norm(A,2) lo mismo que norm(A).
norm(A,1) norma-1 de A, máxima suma de valores absolutos por columnas, es decir:

max(sum(abs((A)))).
norm(A,inf) norma-∞ de A, máxima suma de valores absolutos por filas, es decir:

max(sum(abs((A')))).
 Normas de vectores:

norm(x,p) norma-p, es decir sum(abs(x)^p)^(1/p).
norm(x) norma-2 ó norma euclídea; equivale al módulo o norm(x,2).
norm(x,inf) norma-∞, es decir max(abs(x)).
norm(x,1) norma-1, es decir sum(abs(x)).

Aprenda Matlab 7.0 como si estuviera en Primero página 46

4.5.4. FUNCIÓN LINSOLVE()

La función linsolve es la forma más eficiente de que dispone MATLAB para resolver sistemas de
ecuaciones lineales. A diferencia del operador barra invertida \, esta función no trata de averiguar
las características de la matriz que permitan hacer una resolución más eficiente: se fía de lo que le
dice el usuario. Si éste se equivoca, se obtendrá un resultado incorrecto sin ningún mensaje de error.
Las formas generales de la función linsolve para resolver Ax=b son las siguientes:

x = linsolve(A,b)

x = linsolve(A,b,opts)

Obviamente, si b es una matriz de segundos miembros, x será una mariz de soluciones con el mis-
mo nº de columnas. La primera forma de esta función utiliza la factorización LU con pivotamiento
parcial si la matriz A es cuadrada, y la factorización QR también con pivotamiento por columnas si
no lo es. La función linsolve da un warning si la matriz A es cuadrada y está mlas condicionada, o
si es rectangular y de rango deficiente. Estos warnings se suprimen si se recoge un segundo valor de
retorno r, que representa el inverso de la condición numérica si A es cuadrada o el rango si no lo es:

[x,r] = linsolve(A,b)

El argumento opcional opts representa una estructura por medio de la cual el programador propor-
ciona información sobre las características de la matriz.. Los campos de esta estructura se pueden
poner a true o a false, y son los siguientes: LT (triangular inferior), UT (triangular superior),
UHESS (forma de Hessenberg superior), SYM (simétrica), POSDEF (definida positiva), RECT
(rectangular general) y TRANSA (se desea resolver T =A x b , en lugar de =Ax b). Obviamente, no
todas estas características son compatibles entre sí; las que lo son se indican en la Tabla siguiente:

En la Tabla 1 se observa que, en la actual versión de MATLAB, sólo se admiten matrices simétricas
que son al mismo tiempo definidas positivas. Para concluir este apartado, considérense los ejemplos
siguientes:

>> opts.LT=true; x=linsolve(L,b,opts);

>> clear opts; opts.SYM=true; opts.POSDEF=true; x=linsolve(A,b,opts);

Obsérvese que, antes de realizar una nueva ejecución se han borrado las opciones utilizadas en la
ejecución anterior.

4.6. Más sobre operadores relacionales con vectores y matrices
Cuando alguno de los operadores relacionales vistos previamente (<, >, <=, >=, == y ∼=) actúa en-
tre dos matrices (vectores) del mismo tamaño, el resultado es otra matriz (vector) de ese mismo
tamaño conteniendo unos y ceros, según los resultados de cada comparación entre elementos hayan
sido true o false, respectivamente.

Por ejemplo, supóngase que se define una matriz magic A de tamaño 3x3 y a continuación se forma
una matriz binaria M basada en la condición de que los elementos de A sean mayores que 4 (MA-

Tabla 1. Posibles campos de la esructura opts compatibles entre sí.

LT UT UHESS SYM POSDEF RECT TRANSA
true false false false false true/false true/false
false true false false false true/false true/false
false false true false false false true/false
false false false true true false true/false
false false false false false true/false true/false

Capítulo 4: Funciones de librería página 47

TLAB convierte este cuatro en una matriz de cuatros de modo automático). Obsérvese con atención
el resultado:

>> A=magic(3)
A =
 8 1 6
 3 5 7
 4 9 2
>> M=A>4
M =
 1 0 1
 0 1 1
 0 1 0

De ordinario, las matrices "binarias" que se obtienen de la aplicación de los operadores relacionales
no se almacenan en memoria ni se asignan a variables, sino que se procesan sobre la marcha. MA-
TLAB dispone de varias funciones para ello. Recuérdese que cualquier valor distinto de cero equi-
vale a true, mientras que un valor cero equivale a false. Algunas de estas funciones son:

any(x) función vectorial; chequea si alguno de los elementos del vector x cumple una de-
terminada condición (en este caso ser distinto de cero). Devuelve un uno ó un cero

any(A) se aplica por separado a cada columna de la matriz A. El resultado es un vector de
unos y ceros

all(x) función vectorial; chequea si todos los elementos del vector x cumplen una condi-
ción. Devuelve un uno ó un cero

all(A) se aplica por separado a cada columna de la matriz A. El resultado es un vector de
unos y ceros

find(x) busca índices correspondientes a elementos de vectores que cumplen una determi-
nada condición. El resultado es un vector con los índices de los elementos que
cumplen la condición

find(A) cuando esta función se aplica a una matriz la considera como un vector con una
columna detrás de otra, de la 1ª a la última.

A continuación se verán algunos ejemplos de utilización de estas funciones.
>> A=magic(3)
A =
 8 1 6
 3 5 7
 4 9 2
>> m=find(A>4)
m =
 1
 5
 6
 7
 8

Ahora se van a sustituir los elementos que cumplen la condición anterior por valores de 10. Obsér-
vese cómo se hace y qué resultado se obtiene:

>> A(m)=10*ones(size(m))
A =
 10 1 10
 3 10 10
 4 10 2

donde ha sido necesario convertir el 10 en un vector del mismo tamaño que m. Para chequear si hay
algún elemento de un determinado valor –por ejemplo 3– puede hacerse lo siguiente:

Aprenda Matlab 7.0 como si estuviera en Primero página 48

>> any(A==3)
ans =
 1 0 0
>> any(ans)
ans =
 1

mientras que para comprobar que todos los elementos de A son mayores que cero:
>> all(all(A))
ans =
 1

En este caso no ha hecho falta utilizar el operador relacional porque cualquier elemento distinto de
cero equivale a true.

La función isequal(A, B) devuelve uno si las matrices son idénticas y cero si no lo son.

4.7. Otras funciones que actúan sobre vectores y matrices
Las siguientes funciones pueden actuar sobre vectores y matrices, y sirven para chequear ciertas
condiciones:

exist('var') comprueba si el nombre var existe como variable, función, directorio, fichero,
etc.

isnan(A) chequea si hay valores NaN en A, devolviendo una matriz de unos y ceros del
mismo tamaño que A.

isinf(A) chequea si hay valores Inf en A, devolviendo una matriz de unos y ceros del
mismo tamaño que A.

isfinite(A) chequea si los valores de A son finitos.
isempty(A) chequea si un vector o matriz está vacío o tiene tamaño nulo.
ischar() chequea si una variable es una cadena de caracteres (string).
isglobal() chequea si una variable es global.
issparse() chequea si una matriz es dispersa (sparse, es decir, con un gran número de

elementos cero).

A continuación se presentan algunos ejemplos de uso de estas funciones en combinación con otras
vistas previamente. Se define un vector x con un NaN, que se elimina en la forma:

>> x=[1 2 3 4 0/0 6]
Warning: Divide by zero
x =
 1 2 3 4 NaN 6
>> i=find(isnan(x))
i =
 5
>> x=x(find(~isnan(x)))
x =
 1 2 3 4 6

Otras posibles formas de eliminarlo serían las siguientes:
>> x=x(~isnan(x))
>> x(isnan(x))=[]

La siguiente sentencia elimina las filas de una matriz que contienen algún NaN:
>> A(any(isnan(A)'), :)=[]

Capítulo 4: Funciones de librería página 49

4.8. Determinación de la fecha y la hora
MATLAB dispone de funciones que dan información sobre la fecha y la hora actual (la del reloj
del ordenador). Las funciones más importantes relacionadas con la fecha y la hora son las siguien-
tes.

clock devuelve un vector fila de seis elementos que representan el año, el mes, el día,
la hora, los minutos y los segundos, según el reloj interno del computador. Los
cinco primeros son valores enteros, pero la cifra correspondiente a los segun-
dos contiene información hasta las milésimas de segundo.

now devuelve un número (serial date number) que contiene toda la información de
la fecha y hora actual. Se utiliza como argumento de otras funciones.

date devuelve la fecha actual como cadena de caracteres
(por ejemplo: 24-Aug-2004).

datestr(t) convierte el serial date number t en cadena de caracteres con el día, mes, año,
hora, minutos y segundos. Ver en los manuales on-line los formatos de cadena
admitidos.

datenum() convierte una cadena ('mes-día-año') o un conjunto de seis números (año, mes,
día, horas, minutos, segundos) en serial date number.

datevec() convierte serial date numbers o cadenas de caracteres en el vector de seis ele-
mentos que representa la fecha y la hora.

calendar() devuelve una matriz 6×7 con el calendario del mes actual, o del mes y año que
se especifique como argumento.

weekday(t) devuelve el día de la semana para un serial date number t.

4.9. Funciones para cálculos con polinomios
Para MATLAB un polinomio se puede definir mediante un vector de coeficientes. Por ejemplo, el
polinomio:

x x x4 28 6 10 0− + − =
se puede representar mediante el vector [1, 0, -8, 6, -10]. MATLAB puede realizar diversas opera-
ciones sobre él, como por ejemplo evaluarlo para un determinado valor de x (función polyval()) y
calcular las raíces (función roots()):

>> pol=[1 0 -8 6 -10]
pol =
 1 0 -8 6 -10
>> roots(pol)
ans =
 -3.2800
 2.6748
 0.3026 + 1.0238i
 0.3026 - 1.0238i
>> polyval(pol,1)
ans =
 -11

Para calcular producto de polinomios MATLAB utiliza una función llamada conv() (de producto de
convolución). En el siguiente ejemplo se va a ver cómo se multiplica un polinomio de segundo gra-
do por otro de tercer grado:

>> pol1=[1 -2 4]
pol1 =
 1 -2 4

Aprenda Matlab 7.0 como si estuviera en Primero página 50

>> pol2=[1 0 3 -4]
pol2 =
 1 0 3 -4
>> pol3=conv(pol1,pol2)
pol3 =
 1 -2 7 -10 20 -16

Para dividir polinomios existe otra función llamada deconv(). Las funciones orientadas al cálculo
con polinomios son las siguientes:

poly(A) polinomio característico de la matriz A
roots(pol) raíces del polinomio pol
polyval(pol,x) evaluación del polinomio pol para el valor de x. Si x es un vector, pol se

evalúa para cada elemento de x
polyvalm(pol,A) evaluación del polinomio pol de la matriz A
conv(p1,p2) producto de convolución de dos polinomios p1 y p2
[c,r]=deconv(p,q) división del polinomio p por el polinomio q. En c se devuelve el cociente y

en r el resto de la división
residue(p1,p2) descompone el cociente entre p1 y p2 en suma de fracciones simples (ver

>>help residue)
polyder(pol) calcula la derivada de un polinomio
polyder(p1,p2) calcula la derivada de producto de polinomios
polyfit(x,y,n) calcula los coeficientes de un polinomio p(x) de grado n que se ajusta a los

datos p(x(i)) ~= y(i), en el sentido de mínimo error cuadrático medio.
interp1(xp,yp,x) calcula el valor interpolado para la abscisa x a partir de un conjunto de

puntos dado por los vectores xp e yp.
interp1(xp,yp,x,'m') como la anterior, pero permitiendo especificar también el método de

interpolación. La cadena de caracteres m admite los valores 'nearest', 'li-
near', 'spline', 'pchip', 'cubic' y 'v5cubic'.

Capítulo 5: Otros tipos de datos de MATLAB página 51

5. OTROS TIPOS DE DATOS DE MATLAB
En los capítulos precedentes se ha visto la “especialidad” de MATLAB: trabajar con vectores y
matrices. En este capítulo se va a ver que MATLAB puede también trabajar con otros tipos de da-
tos:

1. Conjuntos o cadenas de caracteres, fundamentales en cualquier lenguaje de programación.

2. Hipermatrices, o matrices de más de dos dimensiones.

3. Estructuras, o agrupaciones bajo un mismo nombre de datos de naturaleza diferente.

4. Vectores o matrices de celdas (cell arrays), que son vectores o matrices cuyos elementos pue-
den ser cualquier otro tipo de dato.

5. Matrices dispersas o matrices dispersas, que son matrices que pueden ser de muy gran tamaño
con la mayor parte de sus elementos cero.

5.1. Cadenas de caracteres
MATLAB trabaja también con cadenas de caracteres, con ciertas semejanzas y también diferencias
respecto a C/C++ y Java. A continuación se explica lo más importante del manejo de cadenas de
caracteres en MATLAB. Las funciones para cadenas de caracteres están en el sub-directorio tool-
box\matlab\strfun del directorio en que esté instalado MATLAB.

Los caracteres de una cadena se almacenan en un vector, con un carácter por elemento. Cada carác-
ter ocupa dos bytes. Las cadenas de caracteres van entre apóstrofos o comillas simples, como por
ejemplo: 'cadena'. Si la cadena debe contener comillas, éstas se representan por un doble carácter
comilla, de modo que se pueden distinguir fácilmente del principio y final de la cadena. Por ejem-
plo, para escribir la cadena ni 'idea' se escribiría 'ni''idea'''.
Una matriz de caracteres es una matriz cuyos elementos son caracteres, o bien una matriz cuyas
filas son cadenas de caracteres. Todas las filas de una matriz de caracteres deben tener el mismo
número de elementos. Si es preciso, las cadenas (filas) más cortas se completan con blancos.

A continuación se pueden ver algunos ejemplos y practicar con ellos:
>> c='cadena'
c =
cadena
>> size(c) % dimensiones del array
ans =
 1 6
>> double(c) % convierte en números ASCII cada carácter
ans =
 99 97 100 101 110 97
>> char(abs(c)) % convierte números ASCII en caracteres
ans =
cadena
>> cc=char('más','madera') % convierte dos cadenas en una matriz
cc =
más
madera
>> size(cc) % se han añadido tres espacios a 'más'
ans =
 2 6

Las funciones más importantes para manejo de cadenas de caracteres son las siguientes:

double(c) convierte en números ASCII cada carácter
char(v) convierte un vector de números v en una cadena de caracteres

Aprenda Matlab 7.0 como si estuviera en Primero página 52

char(c1,c2) crea una matriz de caracteres, completando con blancos las cadenas más cor-
tas

deblank(c) elimina los blancos al final de una cadena de caracteres
disp(c) imprime el texto contenido en la variable c
ischar(c) detecta si una variable es una cadena de caracteres
isletter() detecta si un carácter es una letra del alfabeto. Si se le pasa un vector o matriz

de caracteres devuelve un vector o matriz de unos y ceros
isspace() detecta si un carácter es un espacio en blanco. Si se le pasa un vector o matriz

de caracteres devuelve un vector o matriz de unos y ceros
strcmp(c1,c2) comparación de cadenas. Si las cadenas son iguales devuelve un uno, y si no

lo son, devuelve un cero (funciona de modo diferente que la correspondiente
función de C)

strcmpi(c1,c2) igual que strcmp(c1,c2), pero ignorando la diferencia entre mayúsculas y mi-
núsculas

strncmp(c1,c2,n) compara los n primeros caracteres de dos cadenas
c1==c2 compara dos cadenas carácter a carácter. Devuelve un vector o matriz de unos

y ceros
s=[s,' y más'] concatena cadenas, añadiendo la segunda a continuación de la primera
findstr(c1,c2) devuelve un vector con las posiciones iniciales de todas las veces en que la

cadena más corta aparece en la más larga
strmatch(cc,c) devuelve los índices de todos los elementos de la matriz de caracteres (o vec-

tor de celdas) cc, que empiezan por la cadena c
strrep(c1,c2,c3) sustituye la cadena c2 por c3, cada vez que c2 es encontrada en c1
[p,r]=strtok(t) separa las palabras de una cadena de caracteres t. Devuelve la primera palabra

p y el resto de la cadena r
int2str(v) convierte un número entero en cadena de caracteres
num2str(x,n) convierte un número real x en su expresión por medio de una cadena de ca-

racteres, con cuatro cifras decimales por defecto (pueden especificarse más
cifras, con un argumento opcional n)

str2double(str) convierte una cadena de caracteres representando un número real en el núme-
ro real correspondiente

vc=cellstr(cc) convierte una matriz de caracteres cc en un vector de celdas vc, eliminando
los blancos adicionales al final de cada cadena. La función char() realiza las
conversiones opuestas

sprintf convierte valores numéricos en cadenas de caracteres, de acuerdo con las re-
glas y formatos de conversión del lenguaje C. Esta es la función más general
para este tipo de conversión y se verá con mas detalle en la Sección 6.6.2.

Con las funciones anteriores se dispone en MATLAB de una amplia gama de posibilidades para
trabajar con cadenas de caracteres.

A continuación se pueden ver algunos ejemplos:
>> num2str(pi) % el resultado es una cadena de caracteres, no un número
ans =
3.142
>> num2str(pi,8)
ans =
3.1415927

Es habitual convertir los valores numéricos en cadenas de caracteres para poder imprimirlos como
títulos en los dibujos o gráficos. Véase el siguiente ejemplo:

Capítulo 5: Otros tipos de datos de MATLAB página 53

>> fahr=70; grd=(fahr-32)/1.8;
>> title(['Temperatura ambiente: ',num2str(grd),' grados centígrados'])

5.2. Hipermatrices (arrays de más de dos dimensiones)
MATLAB permite trabajar con hipermatrices, es decir
con matrices de más de dos dimensiones (Figura 27).
Una posible aplicación es almacenar con un único nom-
bre distintas matrices del mismo tamaño (resulta una
hipermatriz de 3 dimensiones). Los elementos de una
hipermatriz pueden ser números, caracteres, estructuras,
y vectores o matrices de celdas.

El tercer subíndice representa la tercera dimensión: la
“profundidad” de la hipermatriz.

5.2.1. DEFINICIÓN DE HIPERMATRICES

Las funciones para trabajar con estas hipermatrices están
en el sub-directorio toolbox\matlab\datatypes. Las fun-
ciones que operan con matrices de más de dos dimen-
siones son análogas a las funciones vistas previamente,
aunque con algunas diferencias. Por ejemplo, las siguien-
tes sentencias generan, en dos pasos, una matriz de 2×3×2:

>> AA(:,:,1)=[1 2 3; 4 5 6] % matriz inicial
AA =
 1 2 3
 4 5 6
>> AA(:,:,2)=[2 3 4; 5 6 7] % se añade una segunda matriz
AA(:,:,1) =
 1 2 3
 4 5 6
AA(:,:,2) =
 2 3 4
 5 6 7

5.2.2. FUNCIONES QUE TRABAJAN CON HIPERMATRICES

Algunas funciones de MATLAB para generar matrices admiten más de dos subíndices y pueden ser
utilizadas para generar hipermatrices. Entre ellas están rand(), randn(), zeros() y ones(). Por ejem-
plo, véase la siguiente sentencia y su resultado:

>> BB=randn(2,3,2)
BB(:,:,1) =
 -0.4326 0.1253 -1.1465
 -1.6656 0.2877 1.1909
BB(:,:,2) =
 1.1892 0.3273 -0.1867
 -0.0376 0.1746 0.7258

La función cat() permite concatenar matrices según las distintas “dimensiones”, como puede verse
en el siguiente ejemplo:

>> A=zeros(2,3); B=ones(2,3);

i

j

k

A(i,j,k)

Figura 27. Hipermatriz de tres dimensiones.

Aprenda Matlab 7.0 como si estuviera en Primero página 54

>> cat(1,A,B)
ans =
 0 0 0
 0 0 0
 1 1 1
 1 1 1
>> cat(2,A,B)
ans =
 0 0 0 1 1 1
 0 0 0 1 1 1
>> cat(3,A,B)
ans(:,:,1) =
 0 0 0
 0 0 0
ans(:,:,2) =
 1 1 1
 1 1 1

Las siguientes funciones de MATLAB se pueden emplear también con hipermatrices:

size() devuelve tres o más valores (el nº de elementos en cada dimensión)
ndims() devuelve el número de dimensiones
squeeze() elimina las dimensiones que son igual a uno
reshape() distribuye el mismo número de elementos en una matriz con distinta forma o

con distintas dimensiones
permute(A,v) permuta las dimensiones de A según los índices del vector v
ipermute(A,v) realiza la permutación inversa

Respecto al resto de las funciones de MATLAB, se pueden establecer las siguientes reglas para su
aplicación a hipermatrices:

1. Todas las funciones de MATLAB que operan sobre escalares (sin(), cos(), etc.) se aplican so-
bre hipermatrices elemento a elemento (igual que sobre vectores y matrices). Las operaciones
con escalares también se aplican de la misma manera.

2. Las funciones que operan sobre vectores (sum(), max(), etc.) se aplican a matrices e hiperma-
trices según la primera dimensión, resultando un array de una dimensión inferior.

3. Las funciones matriciales propias del Álgebra Lineal (det(), inv(), etc.) no se pueden aplicar a
hipermatrices. Para poderlas aplicar hay que extraer primero las matrices correspondientes
(por ejemplo, con el operador dos puntos (:)).

5.3. Estructuras
Una estructura (struct) es una agrupación de datos de tipo diferente bajo un mismo nombre. Estos
datos se llaman miembros (members) o campos (fields). Una estructura es un nuevo tipo de dato,
del que luego se pueden crear muchas variables (objetos o instances). Por ejemplo, la estructura
alumno puede contener los campos nombre (una cadena de caracteres) y carnet (un número).

5.3.1. CREACIÓN DE ESTRUCTURAS

En MATLAB la estructura alumno se crea creando un objeto de dicha estructura. A diferencia de
otros lenguajes de programación, no hace falta definir previamente el modelo o patrón de la estruc-
tura. Una posible forma de hacerlo es crear uno a uno los distintos campos, como en el ejemplo si-
guiente:

>> alu.nombre='Miguel'
alu =
 nombre: 'Miguel'

Capítulo 5: Otros tipos de datos de MATLAB página 55

>> alu.carnet=75482
alu =
 nombre: 'Miguel'
 carnet: 75482
>> alu
alu =
 nombre: 'Miguel'
 carnet: 75482

Se accede a los miembros o campos de una estructura por medio del operador punto (.), que une el
nombre de la estructura y el nombre del campo (por ejemplo: alu.nombre).

También puede crearse la estructura por medio de la función struct(), como por ejemplo,
>> al = struct('nombre', 'Ignacio', 'carnet', 76589)
al =
 nombre: 'Ignacio'
 carnet: 76589

Los nombres de los campos se pasan a la función struct() entre apóstrofos ('), seguidos del valor
que se les quiere dar. Este valor puede ser la cadena vacía ('') o la matriz vacía ([]).

Pueden crearse vectores y matrices (e hipermatrices) de estructuras. Por ejemplo, la sentencia,
>> alum(10) = struct('nombre', 'Ignacio', 'carnet', 76589)

crea un vector de 10 elementos cada uno de los cuales es una estructura tipo alumno. Sólo el ele-
mento 10 del vector es inicializado con los argumentos de la función struct(); el resto de los cam-
pos se inicializan con una cadena vacía o una matriz vacía14. Para dar valor a los campos de los
elementos restantes se puede utilizar un bucle for con sentencias del tipo:

>> alum(i).nombre='Noelia', alum(i).carnet=77524;

MATLAB permite añadir un nuevo campo a una estructura en cualquier momento. La siguiente
sentencia añade el campo edad a todos los elementos del vector alum, aunque sólo se da valor al
campo del elemento 5,

>> alum(5).edad=18;

Para ver el campo edad en los 10 elementos del vector puede teclearse el comando:
>> alum.edad

5.3.2. FUNCIONES PARA OPERAR CON ESTRUCTURAS

Las estructuras de MATLAB disponen de funciones que facilitan su uso. Algunas de estas funcio-
nes son las siguientes:

fieldnames() devuelve un vector de celdas con cadenas de caracteres que recogen los
nombres de los campos de una estructura

isfield(ST,s) permite saber si la cadena s es un campo de una estructura ST
isstruct(ST) permite saber si ST es o no una estructura
rmfield(ST,s) elimina el campo s de la estructura ST
getfield(ST,s) devuelve el valor del campo especificado. Si la estructura es un array hay

que pasarle los índices como cell array (entre llaves {}) como segundo ar-
gumento

setfield(ST,s,v) da el valor v al campo s de la estructura ST. Si la estructura es un array, hay
que pasarle los índices como cell array (entre llaves {}) como segundo ar-
gumento

14 Esta forma de crear arrays de estructuras da error si la estructura ha sido previamente declarada global.

Aprenda Matlab 7.0 como si estuviera en Primero página 56

MATLAB permite definir estructuras anidadas, es decir una estructura con campos que sean otras
estructuras. Para acceder a los campos de la estructura más interna se utiliza dos veces el operador
punto (.), como puede verse en el siguiente ejemplo, en el que la estructura clase contiene un campo
que es un vector alum de alumnos,

>> clase=struct('curso','primero','grupo','A', ...
 'alum', struct('nombre','Juan', 'edad', 19))
clase =
 curso: 'primero'
 grupo: 'A'
 alum: [1x1 struct]
>> clase.alum(2).nombre='María';
>> clase.alum(2).edad=17;
>> clase.alum(2)
ans =
 nombre: 'María'
 edad: 17
>> clase.alum(1)
ans =
 nombre: 'Juan'
 edad: 19

Las estructuras se generalizan con las clases y los objetos, que no se verán en este manual.

5.4. Vectores o matrices de celdas (Cell Arrays)
Un vector (matriz o hipermatriz) de celdas es un vector (matriz o hipermatriz) cuyos elementos son
cada uno de ellos una variable de tipo cualquiera. En un array ordinario todos sus elementos son
números o cadenas de caracteres. Sin embargo, en un array de celdas, el primer elemento puede ser
un número; el segundo una matriz; el tercero una cadena de caracteres; el cuarto una estructura, etc.

5.4.1. CREACIÓN DE VECTORES Y MATRICES DE CELDAS

Obsérvese por ejemplo cómo se crea, utilizando llaves {}, el siguiente vector de celdas,
>> vc(1)={[1 2 3]}
vc =
 [1x3 double]
>> vc(2)={'mi nombre'}
vc =
 [1x3 double] 'mi nombre'
>> vc(3)={rand(3,3)}
vc =
 [1x3 double] 'mi nombre' [3x3 double]

Es importante que el nombre del vector de celdas vc no haya sido utilizado previamente para otra
variable (si así fuera, se obtendría un error). Si es preciso se utiliza el comando clear.

Obsérvese que para crear un vector de celdas los valores asignados a cada elemento se han definido
entre llaves {...}.

Otra nomenclatura alternativa y similar, que también utiliza llaves, es la que se muestra a continua-
ción:

>> vb{1}=[1 2 3]
vb =
 [1x3 double]
>> vb{2}='mi nombre'
vb =
 [1x3 double] 'mi nombre'

Capítulo 5: Otros tipos de datos de MATLAB página 57

>> vb{3}=rand(3,3)
vb =
 [1x3 double] 'mi nombre' [3x3 double]

y también es posible crear el vector de celdas en una sola operación en la forma,
vcc = {[1 2 3], 'mi nombre', rand(3,3)}
vcc =
 [1x3 double] 'mi nombre' [3x3 double]

5.4.2. FUNCIONES PARA TRABAJAR CON VECTORES Y MATRICES DE CELDAS

MATLAB dispone de las siguientes funciones para trabajar con cell arrays:

cell(m,n) crea un cell array vacío de m filas y n columnas
celldisp(ca) muestra el contenido de todas las celdas de ca
cellplot(ca) muestra una representación gráfica de las distintas celdas
iscell(ca) indica si ca es un vector de celdas
num2cell() convierte un array numérico en un cell array
cell2struct() convierte un cell array en una estructura (ver Sección 5.4.3)
struct2cell() convierte una estructura en un cell array (ver Sección 5.4.3)

5.4.3. CONVERSIÓN ENTRE ESTRUCTURAS Y VECTORES DE CELDAS

El siguiente ejemplo convierte el cell array vcc creado previamente en una estructura ST cuyos
campos se pasan como argumentos a la función cell2struct(). El tercer argumento (un 2) indica que
es la segunda dimensión del cell array (las columnas) la que va a dar origen a los campos de la es-
tructura. Con posterioridad la estructura ST se convierte en un nuevo cell array llamado vbb,

>> ST=cell2struct(vb,{'vector','cadena','matriz'},2)
ST =
 vector: [1 2 3]
 cadena: 'mi nombre'
 matriz: [3x3 double]
>> vbb = struct2cell(ST)' % hay que transponer para obtener una fila
vbb =
 [1x3 double] 'mi nombre' [3x3 double]

La gran ventaja de las estructuras y los arrays de celdas es que proporcionan una gran flexibilidad
para el almacenamiento de los más diversos tipos de información. El inconveniente es que se pierde
parte de la eficiencia que MATLAB tiene trabajando con vectores y matrices.

5.5. Matrices dispersas (sparse)
Las matrices dispersas o sparse son matrices de un gran tamaño con la mayor parte de sus elemen-
tos cero. Operar sobre este tipo de matrices con los métodos convencionales lleva a obtener tiempos
de cálculo prohibitivos. Por esta razón se han desarrollado técnicas especiales para este tipo de ma-
trices. En ingeniería es muy frecuente encontrar aplicaciones en las que aparecen matrices sparse.
MATLAB dispone de numerosas funciones para trabajar con estas matrices.

Las matrices dispersas se almacenan de una forma especial: solamente se guardan en memoria los
elementos distintos de cero, junto con la posición que ocupan en la matriz. MATLAB usa 3 arrays
para matrices reales sparse con nnz elementos distintos de cero:

Aprenda Matlab 7.0 como si estuviera en Primero página 58

1. Un array con todos los elementos
distintos de cero (nnz elementos)

2. Un array con los índices de fila de
los elementos distintos de cero (nnz
elementos)

3. Un array con punteros a la posición
del primer elemento de cada co-
lumna (n elementos)

En total se requiere una memoria de
(nnz*8+(nnz+n)*4) bytes. La Figura 28
muestra un ejemplo de matriz dispersa
que viene con MATLAB (se puede car-
gar con load west0479). Esta matriz
tiene 479 filas y columnas. De los
229441 elementos sólo 1887 son distin-
tos de cero. Se comprende que se pue-
den conseguir grandes ahorros de me-
moria y de tiempo de cálculo alma-
cenando y operando sólo con los ele-
mentos distintos de cero.

A continuación se va a mostrar con un ejemplo más pequeño cómo guarda MATLAB estas matri-
ces. Primero se creará una matriz 5×5 llena y luego se convertirá en dispersa.

>> A=[1, 0, 0, -1, 0; 0, 2, 0, 0, 1; 0, 0, 1, 1, 0; 0, 2, 0, 1, 0; -3, 0, 0, 0, 2]
A =
 1 0 0 -1 0
 0 2 0 0 1
 0 0 1 1 0
 0 2 0 1 0
 -3 0 0 0 2
>> S=sparse(A)
S =
 (1,1) 1
 (5,1) -3
 (2,2) 2
 (4,2) 2
 (3,3) 1
 (1,4) -1
 (3,4) 1
 (4,4) 1
 (2,5) 1
 (5,5) 2

Puede observarse cómo MATLAB muestra las matrices dispersas: primero los dos índices, de filas
y de columnas, entre paréntesis y después el valor del elemento. Los elementos se almacenan por
columnas y por eso se guarda la posición en que empieza cada columna.

5.5.1. FUNCIONES PARA CREAR MATRICES DISPERSAS (DIRECTORIO SPARFUN)

Las siguientes funciones permiten crear matrices dispersas. Casi todas estas funciones tienen mu-
chas posibles formas de ser utilizadas, con distintos argumentos y valores de retorno. Se recomienda
ver el Help de MATLAB para tener una información más detallada.

speye(m,n) Matriz identidad dispersa de tamaño m×n con unos en la diagonal
sprand(m,n) Matriz aleatoria dispersa con distribución uniforme

Figura 28. Ejemplo de matriz dispersa (west0479).

Capítulo 5: Otros tipos de datos de MATLAB página 59

sprandn(m,n) Matriz aleatoria dispersa con distribución normal
sprandsym(n) Matriz aleatoria simétrica
spdiags(A) Matriz dispersa a partir de las diagonales de otra matriz

sparse(m,n) Crea una matriz dispersa de tamaño m×n con todos los elementos cero
sparse(A) Crea una matriz dispersa a partir de una matriz llena

sparse(i,j,val,m,n) Construye una matriz dispersa a partir de: i vector de índices de fila, j vec-

tor de índices de columna, val vector de valores, m número de filas, n nú-
mero de columnas, y un 6º argumento que permite definir el máximo nnz
(por defecto en el tamaño de val) por si se quieren añadir después más
elementos

full(S) Convierte una matriz dispersa en una matriz llena
find(S) Encuentra los índices de los elementos distintos de cero y los devuelve

como si la matriz fuera un vector (por columnas).
[i,j,val]=find(S) Devuelve índices de fila, de columna y valores de los elementos, a partir de

los cuáles se puede volver a crear la matriz
spy(S) Representa en una figura los elementos distintos de cero de la matriz

nnz(S) Devuelve el número de elementos distintos de cero
nonzeros(S) Devuelve un vector lleno que contiene los elementos distintos de cero
nzmax(S) Memoria reservada para elementos distintos de cero
spones(S) Reemplazar los elementos distintos de cero por unos
spalloc(m,n,nzmax) Reserva espacio para una matriz dispersa m×n
issparse(S) Devuelve true si el argumento es una matriz dispersa

5.5.2. OPERACIONES CON MATRICES DISPERSAS

Las matrices dispersas son más “delicadas” que las matrices llenas. En concreto, son muy sensibles
a la ordenación de sus filas y columnas. El problema no es tanto la matriz dispersa en sí, como las
matrices –también dispersas- que resultan de las factorizaciones LU o de Cholesky necesarias para
resolver sistemas de ecuaciones, calcular valores y vectores propios, etc. En estas factorizaciones
puede haber muchos elementos cero que dejan de serlo y esto es un grave problema para la eficien-
cia de los cálculos. Reordenando las filas y columnas de una matriz dispersa se puede minimizar el
número de elementos que se hacen distintos de cero al factorizar (llenado o fill-in). MATLAB dis-
pone de dos formas principales de reordenación: los métodos del mínimo grado (minimum degree) y
de Cuthill-McKee inverso (reversed Cuthill-McKee). A continuación se describen las funciones más
importantes de MATLAB en esta categoría.

spfun('fun', S) Aplica una función a los elementos distintos de cero de la matriz S
p=colmmd(S) Devuelve el vector de permutaciones de columnas calculado con el método

del mínimo grado (minimum degree). Para matrices no simétricas esta
permutación tiende a producir factorizaciones LU más dispersas.

p=symmmd(S) Devuelve el vector de permutaciones de filas y columnas (symmetric mi-
nimum degree permutation). Aplicando esta permutación a las filas y co-
lumnas se obtienen factorizaciones de Cholesky más dispersas.

p=symrcm(S) Obtiene un vector de permutaciones por el método de Cuthill-McKee in-
verso tal que, aplicado a filas y columnas de S, obtiene matrices con los
elementos agrupados alrededor de la diagonal principal (mínima anchura
de banda). Se aplica a matrices simétricas y no simétricas.

Aprenda Matlab 7.0 como si estuviera en Primero página 60

p=colperm(S) Obtiene una permutación de columnas que ordena las columnas en orden
de número de ceros no decreciente. A veces se utiliza para ordenar antes
de aplicar la factorización LU. Si la matriz es simétrica la permutación se
puede aplicar a filas y a columnas.

randperm(n) Calcula una permutación aleatoria de los n primeros números naturales

5.5.3. OPERACIONES DE ÁLGEBRA LINEAL CON MATRICES DISPERSAS

A continuación se describen muy brevemente las funciones de MATLAB que pueden utilizarse para
operar con matrices dispersas. Algunas de estas funciones se llaman igual que las correspondientes
funciones para matrices llenas, y otras son específicas de matrices dispersas. Casi todas estas fun-
ciones tienen varias formas de utilizarse. Para más detalles se sugiere recurrir al Help.

[L,U,P]=lu(S) Realiza la factorización LU
L=chol(S) Realiza la factorización de Cholesky
[Q,R]=qr(S) Realiza la factorización QR
[L,U]=luinc(A,tol) Realiza una factorización LU incompleta
L=cholinc(S) Calcula una factorización de Cholesky incompleta (Ver la Ayuda)

[V,D,FLAG] = eigs(S) Calcula algunos valores propios de una matriz cuadrada. Esta función

tiene muchas posibles formas: consultar la Ayuda
svds(S) Calcula algunos valores singulares de una matriz rectangular. Esta

función tiene muchas posibles formas: consultar la Ayuda
normest(S,tol) Estimación de la norma-2 con una determinada tolerancia (por defecto

1e-06)
condest(S) Estimación de condición numérica sub-1
sprank(S) Calcula el rango de una matriz dispersa
symbfact(S) Symbolic factorization analysis. Devuelve información sobre los ele-

mentos que se harán distintos de cero en la factorización de Cholesky,
sin llegar a realizar dicha factorización

Los sistemas de ecuaciones con matrices dispersas se pueden resolver con métodos directos, que
son variantes de la eliminación gaussiana. El camino habitual de acceder a los métodos directos es a
través de los operadores / y \, igual que para matrices llenas.

También se pueden utilizar métodos iterativos, que tienen la ventaja de no cambiar ningún elemento
de la matriz. Se trata de obtener soluciones aproximadas después de un número finito de pasos.

Se llama factorizaciones “incompletas” a aquéllas que no calculan la factorización exacta sino una
aproximada, despreciando los elementos que se hacen distintos de cero pero tienen un valor peque-
ño. Aunque la factorización es incompleta y sólo aproximada, se puede hacer en mucho menos
tiempo y para ciertas finalidades es suficiente. Estas factorizaciones incompletas se utilizan por
ejemplo como pre-condicionadores de algunos métodos iterativos.

Las siguientes funciones son muy especializadas y aquí sólo se van a citar sus nombres (en inglés,
tal como los utiliza MATLAB). Para más información recurrir al Help y a la bibliografía especiali-
zada.

pcg() Resuelve un sistema de ecuaciones lineales por el método del Gradiente
Conjugado Pre-condicionado (Preconditioned Conjugate Gradients Met-
hod). La matriz debe ser simétrica y positivo-definida

bicg() BiConjugate Gradients Method. Similar al anterior para matrices cuadradas
que no son simétricas y positivo-definidas

bicgstab() BiConjugate Gradients Stabilized Method.

Capítulo 5: Otros tipos de datos de MATLAB página 61

cgs() Conjugate Gradients Squared Method
gmres() Generalized Minimum Residual Method
qmr() Quasi-Minimal Residual Method
spparms() Establece los parámetros para las funciones que trabajan con matrices sparse

(set parameters for sparse matrix routines)
spaugment() Form least squares augmented system

5.5.4. REGLAS GENERALES PARA OPERAR CON MATRICES DISPERSAS

El criterio general para trabajar con matrices dispersas en MATLAB es que casi todas las operacio-
nes matriciales estándar funcionan de la misma forma sobre matrices dispersas que sobre matrices
llenas. De todas formas, existen algunos criterios particulares que conviene conocer y que se enun-
cian a continuación:

1. Las funciones que aceptan una matriz como argumento y devuelven un escalar o un vector
siempre devuelven un vector lleno, aunque el argumento sea disperso

2. Las funciones que aceptan como argumentos escalares o vectores y devuelven matrices devuel-
ven matrices llenas

3. Las funciones de un solo argumento que reciben una matriz y devuelven una matriz o vector
conservan el carácter del argumento (disperso o lleno). Ej: chol(), diag(), max(), sum()

4. Las funciones binarias devuelven resultados dispersos si ambos argumentos son dispersos. Si un
operando es lleno devuelven lleno, excepto si la operación conserva los elementos cero y distin-
tos de cero (por ejemplo: .* y ./)

5. La concatenación de matrices con cat o corchetes [] produce resultados dispersos para opera-
ciones mixtas

6. Sub-indexado de matrices; S(i,j) a la derecha de una asignación produce resultados dispersos,
mientras que a la izquierda de una asignación (=) mantiene el tipo de almacenamiento de S.

5.5.5. PERMUTACIONES DE FILAS Y/O COLUMNAS EN MATRICES SPARSE

Para permutar las filas de una matriz se debe pre-multiplicar por una matriz de permutación P, que
es una matriz que deriva de la matriz identidad I por permutación de filas y/o columnas. Así, el pro-
ducto P*S permuta filas de la matriz S, mientras que S*P' permuta columnas.

Un vector de permutación p (que contiene una permutación de los números naturales 1:n) actúa
sobre las filas S(p,:) o columnas S(:,p). El vector de permutación p es más compacto y eficiente que
la matriz de permutación P. Por eso casi siempre los resultados de permutaciones realizadas o a
realizar se dan como vector p (excepto en la factorización LU). Las sentencias siguientes ilustran la
relación entre la matriz P y el vector p.

>> I = speye(5);
>> p=[2,1,5,4,3]
p =
 2 1 5 4 3
P = I(p,:) % para calcular la matriz P a partir del vector p
P =
 (2,1) 1
 (1,2) 1
 (5,3) 1
 (4,4) 1
 (3,5) 1

Aprenda Matlab 7.0 como si estuviera en Primero página 62

p = (P*(1:n)')' % para calcular el vector p a partir de la matriz P
p =
 2 1 5 4 3

Puede comprobarse que la inversa de P es P'. La función de reordenación symrcm(A) tiende a mi-
nimizar la banda de la matriz agrupando los elementos junto a la diagonal, y symmd(A) minimiza el
fill-in o llenado de una matriz simétrica, mientras que colmmd(A) lo hace con una matriz no simé-
trica.

5.6. Clases y objetos
MATLAB dispone de herramientas necesarias para realizar una Programación Orientada a Objetos
(POO) con muchas de las características disponibles en otros lenguajes como C++ y Java. Las va-
riables miembro de una clase son los miembros de una estructura, considerada en el apartado 5.3, a
partir de la página 54. Las funciones miembro de la clase se definen en un directorio con el mismo
nombre de la clase precedido por el carácter @. Dichas funciones pueden ser públicas y privadas. A
diferencia de C++ y Java, las funciones miembro deben recibir el objeto al que se aplican como uno
de los argumentos explícitos, y no mediante el operador punto (.). Existen también los conceptos de
herencia y polimorfismo.

En "Aprenda Matlab 7.0 como si estuviera en Segundo" se proporcionará (cuando esté disponible)
una introducción a la Programación Orientada a Objetos con MATLAB 7.0. En la versión online de
los manuales (formato *.PDF) se contiene una excelente explicación sobre el tema, con numerosos
ejemplos.

Capítulo 6: Programación de MATLAB página 63

6. PROGRAMACIÓN DE MATLAB
Como ya se ha dicho varias veces –incluso con algún ejemplo– MATLAB es una aplicación que se
puede programar muy fácilmente. De todas formas, como lenguaje de programación pronto verá
que no tiene tantas posibilidades como otros lenguajes (ni tan complicadas...). Se comenzará viendo
las bifurcaciones y bucles, y la lectura y escritura interactiva de variables, que son los elementos
básicos de cualquier programa de una cierta complejidad.

6.1. Bifurcaciones y bucles
MATLAB posee un lenguaje de programación que –como cualquier otro lenguaje– dispone de sen-
tencias para realizar bifurcaciones y bucles. Las bifurcaciones permiten realizar una u otra opera-
ción según se cumpla o no una determinada condición. La Figura 29 muestra tres posibles formas
de bifurcación.

Los bucles permiten repetir las mismas o análogas operaciones sobre datos distintos. Mientras que
en C/C++/Java el "cuerpo" de estas sentencias se determinaba mediante llaves {...}, en MATLAB
se utiliza la palabra end con análoga finalidad. Existen también algunas otras diferencias de sin-
taxis.

La Figura 30 muestra dos posibles formas de bucle, con el control situado al principio o al final del
mismo. Si el control está situado al comienzo del bucle es posible que las sentencias no se ejecuten
ninguna vez, por no haberse cumplido la condición cuando se llega al bucle por primera vez. Sin

true

false

false

true

Condición

Bloque 1 Bloque 2

false
Condición 1

Condición 2

Bloque 1

Bloque 2
Bloque 3

true

true

Condición

Sentencias

false

Figura 29. Ejemplos gráficos de bifurcaciones.

false

true

Condición

true
Condición

false

Sentencias

Sentencias

Figura 30. Bucles con control al principio y al final.

Aprenda Matlab 7.0 como si estuviera en Primero página 64

embargo, si la condición está al final del bucle las sentencias se ejecutarán por lo menos una vez,
aunque la condición no se cumpla. Muchos lenguajes de programación disponen de bucles con con-
trol al principio (for y while en C/C++/Java) y al final (do … while en C/C++/Java). En MATLAB
no hay bucles con control al final del bucle, es decir, no existe construcción análoga a do ... while.

Las bifurcaciones y bucles no sólo son útiles en la preparación de programas o de ficheros *.m.
También se aplican con frecuencia en el uso interactivo de MATLAB, como se verá más adelante
en algunos ejemplos.

6.1.1. SENTENCIA IF

En su forma más simple, la sentencia if se escribe en la forma siguiente (obsérvese que –a diferen-
cia de C/C++/Java– la condición no va entre paréntesis, aunque se pueden poner si se desea)15:

if condicion
 sentencias
end

Existe también la bifurcación múltiple, en la que pueden concatenarse tantas condiciones como se
desee, y que tiene la forma:

if condicion1
 bloque1
elseif condicion2
 bloque2
elseif condicion3
 bloque3
else % opción por defecto para cuando no se cumplan las condiciones 1,2,3
 bloque4
end

donde la opción por defecto else puede ser omitida: si no está presente no se hace nada en caso de
que no se cumpla ninguna de las condiciones que se han chequeado.

Una observación muy importante: la condición del if puede ser una condición matricial, del tipo
A==B, donde A y B son matrices del mismo tamaño. Para que se considere que la condición se
cumple, es necesario que sean iguales dos a dos todos los elementos de las matrices A y B (aij=bij,
1≤i≤m, 1≤j≤n). Basta que haya dos elementos aij y bij diferentes para que las matrices ya no sean
iguales, y por tanto las sentencias del if no se ejecuten. Análogamente, una condición en la forma
A∼=B exige que todos los elementos sean diferentes dos a dos (aij≠bij, 1≤i≤m, 1≤j≤n). Bastaría que
hubiera dos elementos aij y bij iguales para que la condición no se cumpliese. En resumen:

if A==B exige que todos los elementos sean iguales dos a dos
if A∼=B exige que todos los elementos sean diferentes dos a dos

Como se ha dicho, MATLAB dispone de funciones especiales para ayudar en el chequeo de condi-
ciones matriciales. Por ejemplo, la función isequal(A, B) devuelve un uno si las dos matrices son
idénticas y un cero en caso de que difieran en algo.

6.1.2. SENTENCIA SWITCH

La sentencia switch realiza una función análoga a un conjunto de if...elseif concatenados. Su forma
general es la siguiente:

15 En los ejemplos siguientes las sentencias aparecen desplazadas hacia la derecha respecto al if, else o end. Esto se

hace así para que el programa resulte más legible, resultando más fácil ver dónde empieza y termina la bifurcación o
el bucle. Es muy recomendable seguir esta práctica de programación.

Capítulo 6: Programación de MATLAB página 65

switch switch_expresion
 case case_expr1,
 bloque1
 case {case_expr2, case_expr3, case_expr4,...}
 bloque2
 ...
 otherwise, % opción por defecto
 bloque3
end

Al principio se evalúa la switch_expresion, cuyo resultado debe ser un número escalar o una cadena
de caracteres. Este resultado se compara con las case_expr, y se ejecuta el bloque de sentencias que
corresponda con ese resultado. Si ninguno es igual a switch_expresion se ejecutan las sentencias
correspondientes a otherwise. Según puede verse en el ejemplo anterior, es posible agrupar varias
condiciones dentro de unas llaves (constituyendo lo que se llama un cell array o vector de celdas,
explicado en el apartado 5.4); basta la igualdad con cualquier elemento del cell array para que se
ejecute ese bloque de sentencias. La “igualdad” debe entenderse en el sentido del operador de
igualdad (==) para escalares y la función strcmp() para cadenas de caracteres). A diferencia de
C/C++/Java16, en MATLAB sólo se ejecuta uno de los bloques relacionado con un case.

6.1.3. SENTENCIA FOR

La sentencia for repite un conjunto de sentencias un número predeterminado de veces. La sentencia
for de MATLAB es muy diferente y no tiene la generalidad de la sentencia for de C/C++/Java. La
siguiente construcción ejecuta sentencias con valores de i de 1 a n, variando de uno en uno.

for i=1:n
 sentencias
end

o bien,
for i=vectorValores
 sentencias
end

donde vectorValores es un vector con los distintos valores que tomará la variable i.
En el siguiente ejemplo se presenta el caso más general para la variable del bucle (valor_inicial:
incremento: valor_final); el bucle se ejecuta por primera vez con i=n, y luego i se va reduciendo de
0.2 en 0.2 hasta que llega a ser menor que 1, en cuyo caso el bucle se termina:

for i=n:-0.2:1
 sentencias
end

En el siguiente ejemplo se presenta una estructura correspondiente a dos bucles anidados. La varia-
ble j es la que varía más rápidamente (por cada valor de i, j toma todos sus posibles valores):

for i=1:m
 for j=1:n
 sentencias
 end
end

Una última forma de interés del bucle for es la siguiente (A es una matriz):
for i=A
 sentencias
end

16 En C se ejecuta el caso seleccionado y todos los siguientes, salvo que se utilice la sentencia break.

Aprenda Matlab 7.0 como si estuviera en Primero página 66

en la que la variable i es un vector que va tomando en cada iteración el valor de una de las columnas
de A.

Cuando se introducen interactivamente en la línea de comandos, los bucles for se ejecutan sólo des-
pués de introducir la sentencia end que los completa.

6.1.4. SENTENCIA WHILE

La estructura del bucle while es muy similar a la de C/C++/Java. Su sintaxis es la siguiente:
while condicion
 sentencias
end

donde condicion puede ser una expresión vectorial o matricial. Las sentencias se siguen ejecutando
mientras haya elementos distintos de cero en condicion, es decir, mientras haya algún o algunos
elementos true. El bucle se termina cuando todos los elementos de condicion son false (es decir,
cero).

6.1.5. SENTENCIA BREAK

Al igual que en C/C++/Java, la sentencia break hace que se termine la ejecución del bucle for y/o
while más interno de los que comprenden a dicha sentencia.

6.1.6. SENTENCIA CONTINUE

La sentencia continue hace que se pase inmediatamente a la siguiente iteración del bucle for o whi-
le, saltando todas las sentencias que hay entre el continue y el fin del bucle en la iteración actual.

6.1.7. SENTENCIAS TRY...CATCH...END

La construcción try...catch...end permite gestionar los errores que se pueden producir en tiempo de
ejecución. Su forma es la siguiente:

try
 sentencias1
catch
 sentencias2
end

En el caso de que durante la ejecución del bloque sentencias1 se produzca un error, el control de la
ejecución se transfiere al bloque sentencias2. Si la ejecución transcurriera normalmente, senten-
cias2 no se ejecutaría nunca. MATLAB dispone de una función lasterr que devuelve una cadena de
caracteres con el mensaje correspondiente al último error que se ha producido. En la forma las-
terr('') pone a cero este contador de errores, y hace que la función lasterr devuelva la matriz vacía
[] hasta que se produzca un nuevo error.

6.2. Lectura y escritura interactiva de variables
Se verá a continuación una forma sencilla de leer variables desde teclado y escribir mensajes en la
pantalla del PC. Más adelante se considerarán otros modos más generales –y complejos– de hacerlo.

6.2.1. FUNCIÓN INPUT

La función input permite imprimir un mensaje en la línea de comandos de MATLAB y recuperar
como valor de retorno un valor numérico o el resultado de una expresión tecleada por el usuario.
Después de imprimir el mensaje, el programa espera que el usuario teclee el valor numérico o la
expresión. Cualquier expresión válida de MATLAB es aceptada por este comando. El usuario pue-

Capítulo 6: Programación de MATLAB página 67

de teclear simplemente un vector o una matriz. En cualquier caso, la expresión introducida es eva-
luada con los valores actuales de las variables de MATLAB y el resultado se devuelve como valor
de retorno. Véase un ejemplo de uso de esta función:

>> n = input('Teclee el número de ecuaciones')

Otra posible forma de esta función es la siguiente (obsérvese el parámetro 's'):
>> nombre = input('¿Cómo te llamas?','s')

En este caso el texto tecleado como respuesta se lee y se devuelve sin evaluar, con lo que se alma-
cena en la cadena nombre. Así pues, en este caso, si se teclea una fórmula, se almacena como texto
sin evaluarse.

6.2.2. FUNCIÓN DISP

La función disp permite imprimir en pantalla un mensaje de texto o el valor de una matriz, pero sin
imprimir su nombre. En realidad, disp siempre imprime vectores y/o matrices: las cadenas de carac-
teres son un caso particular de vectores. Considérense los siguientes ejemplos de cómo se utiliza:

>> disp('El programa ha terminado')
>> A=rand(4,4)
>> disp(A)

Ejecútense las sentencias anteriores en MATLAB y obsérvese la diferencia entre las dos formas de
imprimir la matriz A.

6.3. Ficheros *.m
Los ficheros con extensión (.m) son ficheros de texto sin formato (ficheros ASCII) que constituyen
el centro de la programación en MATLAB. Ya se han utilizado en varias ocasiones. Estos ficheros
se crean y modifican con un editor de textos cualquiera. En el caso de MATLAB ejecutado en un
PC bajo Windows, lo mejor es utilizar su propio editor de textos, que es también Debugger.

Existen dos tipos de ficheros *.m, los ficheros de comandos (llamados scripts en inglés) y las fun-
ciones. Los primeros contienen simplemente un conjunto de comandos que se ejecutan sucesiva-
mente cuando se teclea el nombre del fichero en la línea de comandos de MATLAB o se incluye
dicho nombre en otro fichero *.m. Un fichero de comandos puede llamar a otros ficheros de co-
mandos. Si un fichero de comandos se llama desde de la línea de comandos de MATLAB, las va-
riables que crea pertenecen al espacio de trabajo base de MATLAB (recordar apartado 2.5.6), y
permanecen en él cuando se termina la ejecución de dicho fichero.

Las funciones permiten definir funciones enteramente análogas a las de MATLAB, con su nombre,
sus argumentos y sus valores de retorno. Los ficheros *.m que definen funciones permiten exten-
der las posibilidades de MATLAB; de hecho existen bibliotecas de ficheros *.m que se venden
(toolkits) o se distribuyen gratuitamente (a través de Internet). Las funciones definidas en ficheros
*.m se caracterizan porque la primera línea (que no sea un comentario) comienza por la palabra
function, seguida por los valores de retorno (entre corchetes [] y separados por comas, si hay más
de uno), el signo igual (=) y el nombre de la función, seguido de los argumentos (entre paréntesis y
separados por comas).

Recuérdese que un fichero *.m puede llamar a otros ficheros *.m, e incluso puede llamarse a sí
mismo de forma recursiva. Los ficheros de comandos se pueden llamar también desde funciones, en
cuyo caso las variables que se crean pertenecen al espacio de trabajo de la función. El espacio de
trabajo de una función es independiente del espacio de trabajo base y del espacio de trabajo de las
demás funciones. Esto implica por ejemplo que no puede haber colisiones entre nombres de varia-

Aprenda Matlab 7.0 como si estuviera en Primero página 68

bles: aunque varias funciones tengan una variable llamada A, en realidad se trata de variables com-
pletamente distintas (a no ser que A haya sido declarada como variable global).
A continuación se verá con un poco más de detalle ambos tipos de ficheros *.m.

6.3.1. FICHEROS DE COMANDOS (SCRIPTS)

Como ya se ha dicho, los ficheros de comandos o scripts son ficheros con un nombre tal como fi-
le1.m que contienen una sucesión de comandos análoga a la que se teclearía en el uso interactivo
del programa. Dichos comandos se ejecutan sucesivamente cuando se teclea el nombre del fichero
que los contiene (sin la extensión), es decir cuando se teclea file1 con el ejemplo considerado.
Cuando se ejecuta desde la línea de comandos, las variables creadas por file1 pertenecen al espacio
de trabajo base de MATLAB. Por el contrario, si se ejecuta desde una función, las variables que
crea pertenecen al espacio de trabajo de la función (ver apartado 2.5.6, en la página 14).

En los ficheros de comandos conviene poner los puntos y coma (;) al final de cada sentencia, para
evitar una salida de resultados demasiado cuantiosa. Un fichero *.m puede llamar a otros ficheros
*.m, e incluso se puede llamar a sí mismo de modo recursivo. Sin embargo, no se puede hacer pro-
file (ver apartado 6.11, en la página 95) de un fichero de comandos: sólo se puede hacer de las fun-
ciones.

Las variables definidas por los ficheros de comandos son variables del espacio de trabajo desde el
que se ejecuta el fichero, esto es variables con el mismo carácter que las que se crean interactiva-
mente en MATLAB si el fichero se ha ejecutado desde la línea de comandos. Al terminar la ejecu-
ción del script, dichas variables permanecen en memoria.

El comando echo hace que se impriman los comandos que están en un script a medida que van
siendo ejecutados. Este comando tiene varias formas:

echo on activa el echo en todos los ficheros script
echo off desactiva el echo
echo file on donde 'file' es el nombre de un fichero de función, activa el echo en esa función
echo file off desactiva el echo en la función
echo file pasa de on a off y viceversa
echo on all activa el echo en todas las funciones
echo off all desactiva el echo de todas las funciones

Mención especial merece el fichero de comandos startup.m (ver apartado 2.7). Este fichero se eje-
cuta cada vez que se entra en MATLAB. En él puede introducir todos aquellos comandos que le
interesa se ejecuten siempre al iniciar la sesión, por ejemplo format compact y los comandos nece-
sarios para modificar el path.

6.3.2. DEFINICIÓN DE FUNCIONES

La primera línea de un fichero llamado name.m que define una función tiene la forma:
function [lista de valores de retorno] = name(lista de argumentos)

donde name es el nombre de la función. Entre corchetes y separados por comas van los valores de
retorno (siempre que haya más de uno), y entre paréntesis también separados por comas los argu-
mentos. Puede haber funciones sin valor de retorno y también sin argumentos. Recuérdese que los
argumentos son los datos de la función y los valores de retorno sus resultados. Si no hay valores
de retorno se omiten los corchetes y el signo igual (=); si sólo hay un valor de retorno no hace falta
poner corchetes. Tampoco hace falta poner paréntesis si no hay argumentos.

Capítulo 6: Programación de MATLAB página 69

Una diferencia importante con C/C++/Java es que en MATLAB una función no puede modificar
nunca los argumentos que recibe, de cara al entorno que ha realizado la llamada. Los resultados de
una función de MATLAB se obtienen siempre a través de los valores de retorno, que pueden ser
múltiples y matriciales. Tanto el número de argumentos como el de valores de retorno no tienen que
ser fijos, dependiendo de cómo el usuario llama a la función17.

Las variables definidas dentro de una función son variables locales, en el sentido de que son inac-
cesibles desde otras partes del programa y en el de que no interfieren con variables del mismo nom-
bre definidas en otras funciones o partes del programa. Se puede decir que pertenecen al propio
espacio de trabajo de la función y no son vistas desde otros espacios de trabajo. Para que la función
tenga acceso a variables que no han sido pasadas como argumentos es necesario declarar dichas
variables como variables globales, tanto en el programa principal como en las distintas funciones
que deben acceder a su valor. Es frecuente utilizar el convenio de usar para las variables globales
nombres largos (más de 5 letras) y con mayúsculas.

Por razones de eficiencia, los argumentos que recibe una función de MATLAB no se copian a va-
riables locales si no son modificados por dicha función (en términos de C/C++ se diría que se pasan
por referencia). Esto tiene importantes consecuencias en términos de eficiencia y ahorro de tiempo
de cálculo. Sin embargo, si dentro de la función se realizan modificaciones sobre los argumentos
recibidos, antes se sacan copias de dichos argumentos a variables locales y se modifican las copias
(diríase que en este caso los argumentos se pasan por valor).

Dentro de la función, los valores de retorno deben ser calculados en algún momento (no hay senten-
cia return obligatoria, como en C/C++/Java). De todas formas, no hace falta calcular siempre todos
los posibles valores de retorno de la función, sino sólo los que el usuario espera obtener en la sen-
tencia de llamada a la función. En cualquier función existen dos variables definidas de modo auto-
mático, llamadas nargin y nargout, que representan respectivamente el número de argumentos y el
número de valores de retorno con los que la función ha sido llamada. Dentro de la función, estas
variables pueden ser utilizadas como el programador desee.

La ejecución de una función termina cuando se llega a su última sentencia ejecutable. Si se quiere
forzar el que una función termine de ejecutarse se puede utilizar la sentencia return, que devuelve
inmediatamente el control al entorno de llamada.

6.3.3. SENTENCIA RETURN

De ordinario las funciones devuelven el control después de que se ejecute la última de sus senten-
cias. La sentencia return, incluida dentro del código de una función, hace que se devuelva inmedia-
tamente el control al programa que realizó la llamada.

6.3.4. FUNCIONES CON NÚMERO VARIABLE DE ARGUMENTOS

Desde la versión 5.0, MATLAB dispone de una nueva forma de pasar a una función un número
variable de argumentos por medio de la variable varargin, que es un vector de celdas (ver apartado
5.4, en la página 56) que contiene tantos elementos como sean necesarios para poder recoger en
dichos elementos todos los argumentos que se hayan pasado en la llamada. No es necesario que
varargin sea el único argumento, pero sí debe ser el último de los que haya, pues recoge todos los
argumentos a partir de una determinada posición. Recuérdese que a los elementos de un cell array
se accede utilizando llaves {}, en lugar de paréntesis ().

17 Es un concepto distinto del de funciones sobrecargadas (funciones distintas con el mismo nombre y distintos argu-

mentos), utilizadas en C/C++/Java. En MATLAB una misma función puede ser llamada con más o menos argumen-
tos y valores de retorno. También en C/C++ es posible tener un número variable de argumentos, aunque no de valo-
res de retorno.

Aprenda Matlab 7.0 como si estuviera en Primero página 70

De forma análoga, una función puede tener un número indeterminado de valores de retorno utili-
zando varargout, que es también un cell array que agrupa los últimos valores de retorno de la fun-
ción. Puede haber otros valores de retorno, pero varargout debe ser el último. El cell array varar-
gout se debe crear dentro de la función y hay que dar valor a sus elementos antes de salir de la fun-
ción. Recuérdese también que las variables nargin y nargout indican el número de argumentos y de
valores de retorno con que ha sido llamada la función. A continuación se presenta un ejemplo senci-
llo: obsérvese el código de la siguiente función atan3:

function varargout=atan3(varargin)
 if nargin==1
 rad = atan(varargin{1});
 elseif nargin==2
 rad = atan2(varargin{1},varargin{2});
 else
 disp('Error: más de dos argumentos')
 return
 end
 varargout{1}=rad;
 if nargout>1
 varargout{2}=rad*180/pi;
 end

MATLAB (y muchos otros lenguajes de programación) dispone de dos funciones, llamadas atan y
atan2, para calcular el arco cuya tangente tiene un determinado valor. El resultado de dichas fun-
ciones está expresado en radianes. La función atan recibe un único argumento, con lo cual el arco
que devuelve está comprendido entre –π/2 y +π/2 (entre –90º y 90º), porque por ejemplo un arco de
45º es indistinguible de otro de –135, si sólo se conoce la tangente. La función atan2 recibe dos
argumentos, uno proporcional al seno del ángulo y otro al coseno. En este caso ya se pueden distin-
guir los ángulos en los cuatro cuadrantes, entre –π y π (entre –180º y 180º).

La función atan3 definida anteriormente puede recibir uno o dos argumentos: si recibe uno llama a
atan y si recibe dos llama a atan2 (si recibe más da un mensaje de error). Además, atan3 puede
devolver uno o dos valores de retorno. Por ejemplo, si el usuario la llama en la forma:

>> a = atan3(1);

devuelve un valor de retorno que es el ángulo en radianes, pero si se llama en la forma:
>> [a, b] = atan3(1,-1);

devuelve dos valores de retorno, uno con el ángulo en radianes y otro en grados. Obsérvese cómo la
función atan3 utiliza los vectores de celdas varargin y varargout, así como el número actual de
argumentos nargin con los que ha sido llamada.

6.3.5. HELP PARA LAS FUNCIONES DE USUARIO

También las funciones creadas por el usuario pueden tener su help, análogo al que tienen las pro-
pias funciones de MATLAB. Esto se consigue de la siguiente forma: las primeras líneas de comen-
tarios de cada fichero de función son muy importantes, pues permiten construir un help sobre esa
función. En otras palabras, cuando se teclea en la ventana de comandos de MATLAB:

>> help mi_func

el programa responde escribiendo las primeras líneas del fichero mi_func.m que comienzan por el
carácter (%), es decir, que son comentarios.

De estas líneas, tiene una importancia particular la primera línea de comentarios (llamada en oca-
siones línea H1). En ella hay que intentar poner la información más relevante sobre esa función. La
razón es que existe una función, llamada lookfor que busca una determinada palabra en cada prime-
ra línea de comentario de todas las funciones *.m.

Capítulo 6: Programación de MATLAB página 71

6.3.6. HELP DE DIRECTORIOS

MATLAB permite que los usuarios creen una ayuda general para todas las funciones que están en
un determinado directorio. Para ello se debe crear en dicho directorio un fichero llamado con-
tents.m. A continuación se muestra un fichero típico contents.m correspondiente al directorio tool-
box\local de MATLAB:

% Preferences.
%
% Saved preferences files.
% startup - User startup M-file.
% finish - User finish M-file.
% matlabrc - Master startup M-file.
% pathdef - Search path defaults.
% docopt - Web browser defaults.
% printopt - Printer defaults.
%
% Preference commands.
% cedit - Set command line editor keys.
% terminal - Set graphics terminal type.
%
% Configuration information.
% hostid - MATLAB server host identification number.
% license - License number.
% version - MATLAB version number.

% Utilities.
% userpath - User environment path.

% Copyright 1984-2002 The MathWorks, Inc.
% $Revision: 1.14 $ $Date: 2002/06/07 21:45:05 $

Compruébese que la información anterior es exactamente la que se imprime con el comando
>> help local

Si el fichero contents.m no existe, se listan las primeras líneas de comentarios (líneas H1) de todas
las funciones que haya en ese directorio. Para que el Help de directorios funcione correctamente
hace falta que ese directorio esté en el search path de MATLAB o que sea el directorio actual.

6.3.7. SUB-FUNCIONES

Tradicionalmente MATLAB obligaba a crear un fichero *.m diferente por cada función. El nombre
de la función debía coincidir con el nombre del fichero. A partir de la versión 5.0 se introdujeron las
sub-funciones, que son funciones adicionales definidas en un mismo fichero *.m, con nombres di-
ferentes del nombre del fichero (y del nombre de la función principal) y que las sub-funciones sólo
pueden ser llamadas por las funciones contenidas en ese fichero, resultando “invisibles” para
otras funciones externas.

A continuación se muestra un ejemplo contenido en un fichero llamado mi_fun.m:
function y=mi_fun(a,b)
y=subfun1(a,b);

function x=subfun1(y,z)
x=subfun2(y,z);

function x=subfun2(y,z)
x=y+z+2;

Aprenda Matlab 7.0 como si estuviera en Primero página 72

6.3.8. FUNCIONES PRIVADAS

Las funciones privadas (private) son funciones que no se pueden llamar desde cualquier otra fun-
ción, aunque se encuentren en el path o en el directorio actual. Sólo ciertas funciones están autori-
zadas a utilizarlas. Las funciones privadas se definen en sub-directorios que se llaman private y
sólo pueden ser llamadas por funciones definidas en el directorio padre del sub-directorio private.

En la búsqueda de nombres que hace MATLAB cuando encuentra un nombre en una expresión, las
funciones privadas se buscan inmediatamente después de las sub-funciones, y antes que las funcio-
nes de tipo general.

6.3.9. FUNCIONES *.P

Las funciones *.p son funciones *.m pre-compiladas con la función pcode. Por defecto el resultado
del comando pcode func.m es un fichero func.p en el directorio actual (el fichero func.m puede
estar en cualquier directorio del search path). El comando pcode -inplace func.m crea el fichero
func.p en el mismo directorio donde encuentra el fichero func.m. Pueden pasarse varios ficheros
*.m al comando pcode de una sola vez.

Los ficheros *.p se ejecutan algo más rápidamente que los *.m y permiten ocultar el código de los
ficheros ASCII correspondientes a las funciones *.m de MATLAB.

6.3.10. VARIABLES PERSISTENTES

Las variables persistentes son variables locales de las funciones (pertenecen al espacio de trabajo
de la función y sólo son visibles en dicho espacio de trabajo), que conservan su valor entre distintas
llamadas a la función. Por defecto, las variables locales de una función se crean y destruyen cada
vez que se ejecuta la función. Las variables persistentes se pueden definir en funciones, pero no en
ficheros de comandos. Es habitual utilizar para ellas letras mayúsculas. Las variables se declaran
como persistentes utilizando la palabra persistent seguida de los nombres separados por blancos,
como por ejemplo:

>> persistent VELOCIDAD TIEMPO

Las variables persistent se inicializan a la matriz vacía [] y permanecen en memoria hasta que se
hace clear de la función o cuando se modifica el fichero-M. Para evitar que un fichero-M se modifi-
que se puede utilizar el comando mlock file.m, que impide la modificación del fichero. El comando
munlock desbloquea el fichero mientras que la función mislocked permite saber si está bloqueado o
no.

6.3.11. VARIABLES GLOBALES

Las variables globales son visibles en todas las funciones (y en el espacio de trabajo base o general)
que las declaran como tales. Dichas variables de declaran precedidas por la palabra global y separa-
das por blancos, en la forma:

global VARIABLE1 VARIABLE2

Como ya se ha apuntado, estas variables sólo son visibles en los espacios de trabajo de las funciones
que las declaran como tales (y en el propio espacio de trabajo base, si también ahí han sido declara-
das como globales). Ya se ha dicho también que se suele recurrir al criterio de utilizar nombres lar-
gos y con mayúsculas, para distinguirlas fácilmente de las demás variables.

6.4. Referencias de función (function handles)
Las referencias de función (function handles) constituyen un nuevo mecanismo pera referirse a un
nombre de función, introducido en MATLAB 6.0. En versiones anteriores la única forma de referir-

Capítulo 6: Programación de MATLAB página 73

se a una función era por medio del nombre. Téngase en cuenta que MATLAB, al igual que otros
lenguajes de programación como C/C++ y Java, admite funciones sobrecargadas (overloaded func-
tions), esto es, funciones diferentes que tienen el mismo nombre pero se diferencian entre sí por el
número y tipo de los argumentos. Cuando un programa llama a una función sobrecargada, MA-
TLAB analiza los tipos de los argumentos incluidos en la llamada y llama a la función que mejor se
adapta a esos tipos de argumentos. Las referencias de función permiten al programador un mayor
control sobre la función que es efectivamente llamada y tienen algunas otras ventajas que se verán
en este apartado y en sus sub-apartados.

El principal uso de las referencias de función (como de los nombres de función en versiones ante-
riores) es el pasar a una función el nombre de otra función, junto con sus argumentos, para que la
pueda ejecutar. A estas funciones que ejecutan otras funciones que se les pasan como argumentos se
les llama funciones de función, y se analizan con más detalle en el apartado 6.10, a partir de la pá-
gina 83. Por ejemplo, MATLAB dispone de una función llamada quad que calcula la integral defi-
nida de una función entre unos límites dados. La función quad es genérica, esto es calcula, median-
te métodos numéricos, integrales definidas de una amplia variedad de funciones, pero para que pue-
da calcular dicha integral hay que proporcionarle la función a integrar. Por ejemplo, para calcular la
integral entre 0 y π de la función seno(x) se puede utilizar la sentencia:

>> area=quad('sin',0,pi)
area =
 2.0000

La función quad ejecuta la función sin por medio de la función feval, que tiene la siguiente forma
general:

feval(funcname, arg1, arg2, arg3, ...)

donde funcname es una cadena de caracteres con el nombre de la función a evaluar, y arg1, arg2,
arg3, ... son los argumentos que se le pasan a feval para que se los pueda pasar a funcname.

A partir de la versión 6.0 de MATLAB ya no se pasa, a las funciones de función, el nombre de la
función como en el ejemplo anterior, sino una referencia de función o function handle. De todas
formas, para mantener la compatibilidad con los programas desarrollados en versiones anteriores, se
sigue admitiendo que se pase a feval el nombre de la función, pero este mecanismo ya no se sopor-
tará en versiones posteriores. En MATLAB 6.* la forma correcta de ejecutar el ejemplo anterior
sería (se explicará con más detalle a continuación):

fh=@sin;
area=quad(fh,0,pi);

donde la variable fh es una referencia de función, que es un nuevo tipo de dato de MATLAB, con
todas las posibilidades y limitaciones que esto supone.

6.4.1. CREACIÓN DE REFERENCIAS DE FUNCIÓN

Ya se ha comentado que las referencias de función son un nuevo tipo de datos de MATLAB 6.
Una referencia de función se puede crear de dos formas diferentes:

1. Mediante el operador @ ("at" o "arroba")

La referencia a la función se crea precediendo el nombre de la función por el operador @. El
resultado puede asignarse a una variable o pasarse como argumento a una función. Ejemplos:
fh = @sin;
area = quad(@sin, 0, pi);

2. Mediante la función str2func

Aprenda Matlab 7.0 como si estuviera en Primero página 74

La función str2func recibe como argumento una cadena de caracteres conteniendo el nombre
de una función y devuelve como valor de retorno la referencia de función. Una de las ventajas
de esta función es que puede realizar la conversión de un vector de celdas con los nombres en
un vector de referencias de función. Ejemplos:
>> fh = str2func('sin');
>> str2func({'sin','cos','tan'})
ans =
 @sin @cos @tan

Una característica común e importante de ambos métodos es que se aplican solamente al nombre de
la función, y no al nombre de la función precedido o cualificado por su path. Además los nombres
de función deben tener menos de 31 caracteres.

6.4.2. EVALUACIÓN DE FUNCIONES MEDIANTE REFERENCIAS

La principal aplicación de las referencias de función es pasar información de funciones a otras fun-
ciones para que aquéllas puedan ser ejecutadas por éstas. Para evaluar una referencia de función
MATLAB utiliza la función feval, que se llama de la forma siguiente:

[r1, r2, r3, ...] = feval(fh, arg1, arg2, arg3, ...)

donde fh es una referencia de función y r1, r2, r3, ... y arg1, arg2, arg3, ... son respectivamente los
valores de retorno y los argumentos de la función cuya referencia es fh.

Sobre la función feval hay que hacer dos observaciones:

1. La referencia de función fh debe ser un escalar. En otras palabras, no es posible evaluar un
array de referencias de función con una sola llamada a feval.

2. La función fh que se ejecuta en el momento de la llamada a feval depende de la situación en el
momento en que se creó la referencia de función, y no de la situación en el momento de la lla-
mada a feval. Por ejemplo, si después de crear la referencia fh se cambia de directorio la fun-
ción correspondiente, en el momento de la ejecución no será posible encontrarla; si después de
crear fh se crea una nueva función con el mismo nombre, esta función no podrá nunca ser eje-
cutada por medio de la referencia creada previamente.

El siguiente ejemplo muestra cómo se puede ejecutar una sub-función desde otra función definida
en un fichero *.m diferente. Recuérdese que, en principio, las sub-funciones sólo son accesibles
desde otras funciones definidas en el mismo fichero *.m. Supóngase que se crea un fichero llamado
pruebafh.m que contiene las siguientes líneas (se define una función principal pruebafh que se lla-
ma como el fichero y una sub-función subf):

% fichero pruebafh.m
function mifh=pruebafh
mifh=@subf;

function A=subf(B, C)
A=B+C;

Obsérvese que la función principal pruebafh devuelve una referencia a la sub-función subf. En
principio sólo pruebafh tiene acceso a subf y gracias a ese acceso puede crear la referencia mifh.
Sin embargo, una vez que la referencia a subf ha sido creada y devuelta como valor de retorno,
cualquier función con acceso a pruebafh podrá también acceder a la sub-función subf. El siguiente
programa principal, definido en un fichero pruebafhMain.m, puede acceder a la sub-función gra-
cias a la referencia de función (si se intenta acceder directamente se obtiene un error).

Capítulo 6: Programación de MATLAB página 75

% fichero pruebafhMain.m
fh=pruebafh
A=rand(3);
B=eye(3)*10;
C=feval(fh,A,B)
% D=subf(A,B) % ERROR
disp('Ya he terminado')

Este ejemplo sencillo es bastante significativo respecto a los beneficios que se pueden obtener de
las referencias de función.

6.4.3. INFORMACIÓN CONTENIDA POR UNA REFERENCIA DE FUNCIÓN. FUNCIONES SOBRECARGADAS

Una referencia de función puede contener información de varias funciones, en concreto de todas
aquellas funciones que fueran "visibles" en el momento en el que dicha referencia fue creada. Re-
cuérdese que funciones visibles, además de las funciones intrínsecas de MATLAB (built-in func-
tions) son las funciones que están definidas en el directorio actual y en los directorios definidos en
el path de MATLAB.

La función functions permite obtener toda la información disponible de una referencia de función.
Obsérvese la estructura salida del siguiente ejemplo (el campo methods es a su vez una estructura
que puede mostrarse por separado):

>> info=functions(@deblank)
 function: 'deblank'
 type: 'overloaded'
 file: 'c:\matlab6p5\toolbox\matlab\strfun\deblank'
 methods: [1x1 struct]
>> info.methods
ans =
 cell: 'c:\matlab6p5\toolbox\matlab\strfun\@cell\deblank'

En este caso concreto se ha considerado la función deblank, que permite eliminar caracteres en
blanco en cadenas de caracteres o en vectoras de celdas con cadenas de caracteres. El valor de re-
torno de la función functions es una estructura con los cuatro campos siguientes:

function cadena de caracteres con el nombre de la función a la que corresponde la refe-
rencia

type Cadena de caracteres con uno de los siguientes valores: 'simple', 'subfunction',
'private', 'constructor' y 'overloaded'.

file Cadena de caracteres que contiene el nombre del fichero *.m en el que está de-
finida la función o bien el texto 'MATLAB built-in function'.

methods Estructura que contiene los paths de los ficheros *.m en los que están definidas
las funciones sobrecargadas que se corresponden con esta referencia.

El argumento de la función functions debe ser una referencia de función escalar (no puede ser un
array de referencias de función).

Los distintos valores del campo type tienen los siguientes significados:

simple Funciones intrínsecas no sobrecargadas.

overloaded Funciones sobrecargadas. Son las únicas que tienen campo methods.

constructor Constructores relacionados con clases y objetos.

subfunction Funciones definidas en un fichero *.m de otra función.

private Funciones privadas (definidas en un subdirectorio private).

Aprenda Matlab 7.0 como si estuviera en Primero página 76

Las funciones sobrecargadas (overloaded) tienen un interés especial, pues son las únicas que tie-
nen el campo methods y las que pueden dar origen a más dificultades o problemas. De modo análo-
go a otros lenguajes de programación como C/C++ y Java, las funciones sobrecargadas de MA-
TLAB son funciones que tienen el mismo nombre, pero distintos tipos de argumentos y distinto
código (en otras palabras, funciones diferentes que sólo coinciden en el nombre).

Las funciones default son las que no tienen argumentos especializados. Otras funciones esperan
recibir un argumento de un tipo más concreto. Salvo que haya una función especializada cuyos ar-
gumentos coincidan con los tipos de la llamada, MATLAB utilizará la función default.

6.4.4. OTROS ASPECTOS DE LAS REFERENCIAS DE FUNCIÓN

De la misma manera que una cadena de caracteres pude ser convertida en una referencia de función
por medio de la función str2func, MATLAB dispone de la función func2str que realiza la conver-
sión inversa. Puede ser interesante convertir una referencia de función en cadena de caracteres para
construir mensajes de error en relación con construcciones try...catch.

Otras funciones que pueden utilizarse en relación con las referencias de función son las siguientes
(se presentas mediante ejemplos):

isa(unaVariable, 'function_handle')

Función que devuelve "1" ó "0" según unaVariable sea o no una referencia de función. Es-
ta función se podría utilizar dentro de una función de función para comprobar que el argu-
mento que indica la función a ejecutar con feval ha llegado correctamente.

isequal(unfh, otrofh)

Función que compara dos referencias a función e indica si dan acceso exactamente a los
mismos métodos o no.

Como las referencias de función son variables estándar de MATLAB, pueden guardarse y recupe-
rarse de una sesión a otra por medio de los comandos save y load. Hay que tener cuidado al utilizar
referencias de función creadas en sesiones anteriores, porque si ha cambiado el entorno de trabajo
en algo que les afecte se obtendrá un error en tiempo de ejecución.

6.4.5. UTILIDAD DE LAS REFERENCIAS DE FUNCIÓN

La principal utilidad de las referencias de función es el pasar información de una función a otras
funciones que la deben poder ejecutar por medio de feval. Algunas otras ventajas de las referencias
de funciones son las siguientes:

1. Se pueden encontrar todas las funciones con el mismo nombre que son visibles en un deter-
minado estado del programa. De esta forma se tiene más control sobre la función que verda-
deramente se va a ejecutar.

2. Acceder desde cualquier parte de un programa a las funciones privadas y a las sub-funciones.
De esta forma se puede reducir el número de ficheros *.m necesarios, pues muchas funciones
se podrán definir como sub-funciones en un mismo fichero.

3. Mejorar la eficiencia de las funciones que se utilizan repetidamente, pues no es necesario bus-
car el fichero *.m cada vez.

4. Las referencias de función son, como se ha dicho, variables ordinarias de MATLAB que pue-
den ser agrupadas en arrays de una o más dimensiones.

Capítulo 6: Programación de MATLAB página 77

6.4.6. FUNCIONES INLINE

MATLAB permite definir funciones a partir de expresiones matemáticas por medio de la función
inline. Esta función trata de averiguar inteligentemente cuáles son los argumentos de la función
inline, a partir del contenido de la expresión matemática. Por defecto se supone que 'x' es el ar-
gummento, aunque es también posible determinarlos explícitamente al llamar a inline. Considéren-
se los siguientes ejemplos:

>> f=inline('expresión entre apóstrofos');
>> f=inline('expresión', a1, a2, a3); % los argumentos son 'a1', 'a2', 'a3'
>> f=inline('expresión', N); % los argumentos son 'x', 'P1', ..., 'PN'

Las funciones inline se llaman con el handle (f en las sentencias anteriores) seguido de los argu-
mentos entre paréntesis.

6.4.7. FUNCIONES ANÓNIMAS

Las funciones anónimas constituyen una forma muy flexible de crear funciones sobre la marcha,
bien en la línea de comandos, bien en una línea cualquiera de una función o de un fichero *.m. La
forma general de las funciones anónimas es la siguiente:

fhandle = @(argumentos) expresión;

Después de ser creada, la función anónima puede ser llamada a través del fhandle seguido de la
lista de argumentos actuales entre paréntesis, o también puede ser pasada a otra función como ar-
gumento, también por medio del fhandle. Por ejemplo, la siguiente función anónima calcula el va-
lor del seno del ángulo doble:

senoAngDoble = @(ang) 2*sin(and).*cos(ang);

Las funciones anónimas acceden a las variables del espacio de trabajo en el que son definidas y
crean en ese momento una copia de las variables que utilizan. El valor de dichas variables ya no se
actualiza; sólo los argumentos pueden cambiar de valor. De esta forma, las funciones anónimas
pueden ejecutarse a ravés del handle en otros espacios de trabajo.

Si las funciones anónimas no tienen argumentos hay que poner los paréntesis vacíos, tanto al defi-
nirlas como al llamarlas. Por otra parte, pueden tener varios valores de retorno cuando la expresion
que contienen devuelve varios valores. Se pueden recoger todos o sólo algunos de estos valores.

La única limitación importante de las funciones anónimas es que están limitadas a una única ex-
presión ejecutable de MATLAB. Por otra parte, su uso no tiene más limitaciones que las del uso del
handle de una función cualquiera.

6.4.8. FUNCIONES ANIDADADAS

Las funciones anidadas (nested functions) son funciones definidas dentro de otras funciones, las
llamadas funciones contenedoras. Cuando se definen funciones anidadas es imprescindible termi-
nar con una sentencia end la definición de cada una de las funciones contenidas en el fichero *.m.

Las funciones anidadas sirven para tener un mayor y mejor control sobre la visibilidad de las fun-
ciones (qué función puede ser llamada y desde dónde), así como sobre la visibilidad que dichas
fiunciones tienen sobre las distintas variables del espacio de trabajo, incluyendo las que no les han
sido pasadas como argumentos.

Una función puede contener varias funciones anidadas al mismo nivel, y una función anidada puede
también ser contenedora, es decir contener a su vez una ó más funciones anidadas.

A continuación se muestra un ejemplo sencillo de múltiples funciones anidadas a varios niveles:

Aprenda Matlab 7.0 como si estuviera en Primero página 78

function A(arg1)
 ...
 function Aa(a1,a2)
 ...
 function Aa1()
 ...
 end
 end

 function Ab()
 ...
 function Ab1()
 ...
 end
 ...
 function Ab2()
 ...
 end
 ...
 end

end

Reglas para llamar a las funciones anidadas:

1. Una función anidada se puede llamar desde cualquier otra función que tenga acceso al handle.

2. Una función anidada se puede llamar directamente desde la función del nivel inmediatamente
superior. Por ejemplo, la función A puede llamar a las funciones Aa y Ab, pero no a las funcio-
nes Ab1 y Ab2 que están dos niveles más abajo.

3. Una función anidada puede llamar a otras funciones anidadas en la misma función contenedora
y al mismo nivel. Por ejemplo, la función Aa puede llamar a la función Ab, y la Ab1 a la Ab2.

4. Una función anidada puede llamar a todas las que están por encima de ella en línea directa. Por
ejemplo, la función Ab2 puede llamar a las funciones A y Ab. Una función anidada no puede
llamar a las que están al mismo nivel en otra rama; por ejemplo, Aa1 no pueede llamar a Ab2.

5. Además, cualquier función anidada puede llamar a todas las sub-funciones definidas en el mis-
mo fichero.

Reglas para la visibilidad de las variables con sub-funciones y funciones anidadas:

1. En general, las funciones y sub-funciones definidas en el mismo fichero tienen espacios de tra-
bajo diferentes. Como consecuencia, las variables definidas en una función son variables loca-
les que no pueden ser vistas por otras funciones o sub-funciones.

2. También una función anidada tiene su propio espacio de trabajo, pero además tiene acceso a
todas las variables definidas por las funciones que están por encima de ella en la jerarquía de
funciones anidadas.

3. También las funciones contenedoras ven y pueden modificar las variables locales definidas en
sus funciones anidadas, siempre que definan o usen dichas variables. Como regla general, una
variable usada o definida en una función anidada pertenece al espacio de trabajo de la función
contenedora más exterior que de alguna manera accede a dicha variable.

4. Como consecuencia de lo dicho, si una función contenedora no usa o define una variable, pero
esa variable es definida por dos funciones anidadas al mismo nivel en dicha función, dichas va-
riables en las funciones anidadas son realmente variables distintas, pues al no ser usadas por la
función contenedora no se transmiten a su espacio de trabajo.

Capítulo 6: Programación de MATLAB página 79

5. Las variables correspondientes a los valores de retorno de una función anidada no pertenecen al
espacio de trabajo de las funciones contenedoras que las llaman. Los valores d eretorno deben
ser recogidoa explícitamente.

Recuérdese que el handle debe ser creado desde un punto del programa en el que la función es visi-
ble. Sin embargo, es posible utilizarlo luego en otro punto desde el que la función ya no sea visible.
Estas reglas se aplican también a las funciones anidadas, aunque con algunas peculiaridades. En el
momento de la creación del handle, las funciones anidadas tienen acceso a un espacio de trabajo
ampliado con el de otras funciones del fichero *.m, según se ha expuesto. Para que esta función
pueda ser llamada a través del handle en otro lugar del programa, en el momento de la creación del
handle se crea una copia de las variables de su espacio de trabajo ampliado; estas copias son de tipo
persistent y se conservan entre llamadas. Se recomienda ver los ejemplos en el Help de MATLAB.

6.5. Entrada y salida de datos
Ya se ha visto una forma de realizar la entrada interactiva de datos por medio de la función input y
de imprimir resultados por medio de la función disp. Ahora se van a ver otras formas de intercam-
biar datos con otras aplicaciones.

6.5.1. IMPORTAR DATOS DE OTRAS APLICACIONES

Hay varias formas de pasar datos de otras aplicaciones –por ejemplo de Excel– a MATLAB. Se
pueden enumerar las siguientes:

– se puede utilizar el Copy y Paste para copiar datos de la aplicación original y depositarlos en-
tre los corchetes de una matriz o vector, en una línea de comandos de MATLAB. Tiene el in-
conveniente de que estos datos no se pueden editar.

– se puede crear un fichero *.m con un editor de textos, con lo cual no existen problemas de
edición.

– es posible leer un flat file escrito con caracteres ASCII. Un flat file es un fichero con filas de
longitud constante separadas con Intro, y varios datos por fila separados por blancos. Estos
ficheros pueden ser leídos desde MATLAB con el comando load. Si se ejecuta load datos.txt
el contenido del flat file se deposita en una matriz con el nombre datos. Por ejemplo, creando
un fichero llamado flat.txt que contenga las líneas:

23.456 56.032 67.802
 3.749 -98.906 34.910

el comando A=load('flat.txt') leerá estos valores y los asignará a la matriz A. Para más
información utilizar help load.

– el comando textread permite leer datos de cualquier tipo de un fichero siempre que estén con-
venientemente separados. Ver el Help para más información.

– se pueden leer datos de un fichero con las funciones fopen y fread (ver apartados 6.6.1 y
6.6.3, en las páginas 80 y 81).

– existen también otros métodos posibles: escribir funciones en C para traducir a formato *.mat
(y cargar después con load), crear un fichero ejecutable *.mex que lea los datos, etc. No se ve-
rán en estos apuntes.

6.5.2. EXPORTAR DATOS A OTRAS APLICACIONES

De forma análoga, también los resultados de MATLAB se pueden exportar a otras aplicaciones
como Word o Excel.

Aprenda Matlab 7.0 como si estuviera en Primero página 80

– utilizar el comando diary para datos de pequeño tamaño (ver apartado 2.9, en la página 21)

– utilizar el comando save con la opción –ascii (ver apartado 2.7, en la página 19)

– utilizar las funciones de bajo nivel fopen, fwrite y otras (ver apartados 6.6.1 y 6.6.3, en las
páginas 80 y 81)

– otros métodos que no se verán aquí: escribir subrutinas en C para traducir de formato *.mat
(guardando previamente con save), crear un fichero ejecutable *.mex que escriba los datos,
etc.

Hay que señalar que los ficheros binarios *.mat son trasportables entre versiones de MATLAB en
distintos tipos de computadores, porque contienen información sobre el tipo de máquina en el hea-
der del fichero, y el programa realiza la transformación de modo automático. Los ficheros *.m son
de tipo ASCII, y por tanto pueden ser leídos por distintos computadores sin problemas de ningún
tipo.

6.6. Lectura y escritura de ficheros
MATLAB dispone de funciones de lectura/escritura análogas a las del lenguaje C (en las que están
inspiradas), aunque con algunas diferencias. En general son versiones simplificadas –con menos
opciones y posibilidades– que las correspondientes funciones de C.

6.6.1. FUNCIONES FOPEN Y FCLOSE

Estas funciones sirven para abrir y cerrar ficheros, respectivamente. La función fopen tiene la forma
siguiente:

[fi,texto] = fopen('filename','c')

donde fi es un valor de retorno que sirve como identificador del fichero, texto es un mensaje para
caso de que se produzca un error, y c es un carácter (o dos) que indica el tipo de operación que se
desea realizar. Las opciones más importantes son las siguientes:

'r' lectura (de read)
'w' escritura reemplazando (de write)
'a' escritura a continuación (de append)
'r+' lectura y escritura

Cuando por alguna razón el fichero no puede ser abierto, se devuelve un (-1). En este caso el valor
de retorno texto puede proporcionar información sobre el tipo de error que se ha producido (tam-
bién existe una función llamada ferror que permite obtener información sobre los errores. En el
Help del programa se puede ver cómo utilizar esta función).

Después de realizar las operaciones de lectura y escritura deseadas, el fichero se puede cerrar con la
función close en la forma siguiente:

st = fclose(fi)

donde st es un valor de retorno para posibles condiciones de error. Si se quieren cerrar a la vez to-
dos los ficheros abiertos puede utilizarse el comando:

st = close('all')

6.6.2. FUNCIONES FSCANF, SSCANF, FPRINTF Y SPRINTF

Estas funciones permiten leer y escribir en ficheros ASCII, es decir, en ficheros formateados. La
forma general de la función fscanf es la siguiente:

[var1,var2,...] = fscanf(fi,'cadena de control',size)

Capítulo 6: Programación de MATLAB página 81

donde fi es el identificador del fichero (devuelto por la función fopen), y size es un argumento op-
cional que puede indicar el tamaño del vector o matriz a leer. Obsérvese otra diferencia con C: las
variables leídas se devuelven como valor de retorno y no como argumentos pasados por referencia
(precedidos por el carácter &). La cadena de control va encerrada entre apóstrofos simples, y con-
tiene los especificadores de formato para las variables:

%s para cadenas de caracteres
%d para variables enteras
%f para variables de punto flotante
%lf para variables de doble precisión

La función sscanf es similar a fscanf pero la entrada de caracteres no proviene de un fichero sino de
una cadena de caracteres.

Finalmente, la función fprintf dirige su salida formateada hacia el fichero indicado por el identifi-
cador. Su forma general es:

fprintf(fi,'cadena de control',var1,var2,...)

Ésta es la función más parecida a su homóloga de C. La cadena de control contiene los formatos de
escritura, que son similares a los de C, como muestran los ejemplos siguientes:

fprintf(fi,'El número de ecuaciones es: %d\n',n)
fprintf(fi,'El determinante es: %lf10.4\n',n)

De forma análoga, la función sprintf convierte su resultado en una cadena de caracteres que devuel-
ve como valor de retorno, en vez de enviarlo a un fichero. Véase un ejemplo:

resultado = sprintf('El cuadrado de %f es %12.4f\n',n,n*n)

donde resultado es una cadena de caracteres. Esta función constituye el método más general de
convertir números en cadenas de caracteres, por ejemplo para ponerlos como títulos de figuras.

6.6.3. FUNCIONES FREAD Y FWRITE

Estas funciones son análogas a fscanf y fprintf, pero en vez de leer o escribir en un fichero de texto
(ASCII), lo hacen en un fichero binario, no legible directamente por el usuario. Aunque dichos fi-
cheros no se pueden leer y/o modificar con un editor de textos, tienen la ventaja de que las opera-
ciones de lectura y escritura son mucho más rápidas, eficientes y precisas (no se pierden decimales
al escribir). Esto es particularmente significativo para grandes ficheros de datos. Para más informa-
ción sobre estas funciones se puede utilizar el help.

6.6.4. FICHEROS DE ACCESO DIRECTO

De ordinario los ficheros de disco se leen y escriben secuencialmente, es decir, de principio a final,
sin volver nunca hacia atrás ni realizar saltos. Sin embargo, a veces interesa acceder a un fichero de
un modo arbitrario, sin ningún orden preestablecido. Esto se puede conseguir con las funciones ftell
y fseek.

En cada momento, hay una especie de cursor que indica en qué parte del fichero se está posiciona-
do. La función fseek permite mover este cursor hacia delante o hacia atrás, respecto a la posición
actual ('cof'), respecto al principio ('bof') o respecto al final del fichero ('eof'). La función ftell indica
en qué posición está el cursor. Si alguna vez se necesita utilizar este tipo de acceso a disco, se puede
buscar más información por medio del help.

Aprenda Matlab 7.0 como si estuviera en Primero página 82

6.7. Recomendaciones generales de programación
Las funciones vectoriales de MATLAB son mucho más rápidas que sus contrapartidas escalares. En
la medida de lo posible es muy interesante vectorizar los algoritmos de cálculo, es decir, realizarlos
con vectores y matrices, y no con variables escalares dentro de bucles.

Aunque los vectores y matrices pueden ir creciendo a medida que se necesita, es mucho más rápido
reservarles toda la memoria necesaria al comienzo del programa. Se puede utilizar para ello la fun-
ción zeros. Además de este modo la memoria reservada es contigua.

Es importante utilizar el profile para conocer en qué sentencias de cada función se gasta la mayor
parte del tiempo de cálculo. De esta forma se descubren “cuellos de botella” y se pueden desaroollar
aplicaciones mucho más eficientes.

Conviene desarrollar los programas incrementalmente, comprobando cada función o componente
que se añade. De esta forma siempre se construye sobre algo que ya ha sido comprobado y que fun-
ciona: si aparece algún error, lo más probable es que se deba a lo último que se ha añadido, y de
esta manera la búsqueda de errores está acotada y es mucho más sencilla. Recuérdese que de ordi-
nario el tiempo de corrección de errores en un programa puede ser 4 ó 5 veces superior al tiempo de
programación. El debugger es una herramienta muy útil a la hora de acortar ese tiempo de puesta a
punto.

En este mismo sentido, puede decirse que pensar bien las cosas al programar (sobre una hoja de
papel en blanco, mejor que sobre la pantalla del PC) siempre es rentable, porque se disminuye más
que proporcionalmente el tiempo de depuración y eliminación de errores.

Otro objetivo de la programación debe ser mantener el código lo más sencillo y ordenado posible.
Al pensar en cómo hacer un programa o en cómo realizar determinada tarea es conveniente pensar
siempre primero en la solución más sencilla, y luego plantearse otras cuestiones como la eficiencia.

Finalmente, el código debe ser escrito de una manera clara y ordenada, introduciendo comentarios,
utilizando líneas en blanco para separar las distintas partes del programa, sangrando las líneas para
ver claramente el rango de las bifurcaciones y bucles, utilizando nombres de variables que recuer-
den al significado de la magnitud física correspondientes, etc.

En cualquier caso, la mejor forma (y la única) de aprender a programar es programando.

6.8. Acelerador JIT (Just In Time) en MATLAB
La versión 6.5 de MATLAB incorporó por primera vez un acelerador para los ficheros *.m, que
permite acercarse a las velocidades de otros lenguajes de programación como Fortran y C/C++.

Es importante saber qué tipo de programas pueden ser acelerados y cuáles no lo son. En principio
MATLAB acelera los bucles de los ficheros *.m que no contienen cierto tipo de sentencias. Más en
concreto, se pueden ofrecer las siguientes recomendaciones prácticas:

1. No utilizar estructuras, vectores de celdas, clases ni llamadas a función por medio de referen-
cias.

2. No utilizar hipermatrices con más de tres dimensiones.

3. Utilizar sólo llamadas a funciones nativas de MATLAB (funciones compiladas, no definidas
por medio de ficheros *.m o ficheros MEX).

4. No utilizar variables que cambian de tipo a lo largo de la ejecución (por ejemplo, una variable
que primero es una cadena de caracteres y luego pasa a ser una matriz real).

Capítulo 6: Programación de MATLAB página 83

5. No utilizar las variables i y/o j con números complejos como si fueran variables normales (por
ejemplo, no utilizar 3*i, sino 3i).

6. No utilizar vectores y/o matrices que crecen a lo largo de la ejecución del programa. Es mu-
cho mejor reservar previamente toda la memoria necesaria mediante la función zeros, ones o
equivalente.

6.9. Llamada a comandos del sistema operativo y a otras funciones externas
Estando en la ventana de comandos de MATLAB, se pueden ejecutar comandos de MS-DOS pre-
cediéndolos por el carácter (!), como por ejemplo:

>> !edit fichero1.m

Si el comando va seguido por el carácter ampersand (&) el comando se ejecuta en “background”, es
decir, se recupera el control del programa sin esperar que el comando termine de ejecutarse. Por
ejemplo, para arrancar Notepad en background,

>> !notepad &

Existe también la posibilidad de arrancar una aplicación y dejarla iconizada. Esto se hace postpo-
niendo el carácter barra vertical (|), como por ejemplo en el comando:

>> !notepad |

Algunos comandos de MATLAB realizan la misma función que los comandos análogos del sistema
operativo MS-DOS, con lo que se puede evitar utilizar el operador (!). Algunos de estos comandos
son los siguientes:

dir contenido del directorio actual
what ficheros *.m en el directorio actual
delete filename borra el fichero llamado filename
mkdir(nd) crea un sub-directorio con el nombre nd
copyfile(sc, dst) copia el fichero sc en el fichero dst
type file.txt imprime por la pantalla el contenido del fichero de texto file.txt
cd cambiar de directorio activo
pwd muestra el path del directorio actual
which func localiza una función llamada func
lookfor palabra busca palabra en todas las primeras líneas de los ficheros *.m

6.10. Funciones de función
Como ya se ha comentado al hablar de las referencias de función, en MATLAB existen funciones a
las que hay que pasar como argumento el nombre de otras funciones, para que puedan ser llamadas
desde dicha función. Así sucede por ejemplo si se desea calcular la integral definida de una función,
resolver una ecuación no lineal, o integrar numéricamente una ecuación diferencial ordinaria (pro-
blema de valor inicial). Estos serán los tres casos –de gran importancia práctica– que se van a ver a
continuación. Se comenzará por medio de un ejemplo, utilizando una función llamada prueba que
se va a definir en un fichero llamado prueba.m.

Aprenda Matlab 7.0 como si estuviera en Primero página 84

Para definir esta función, se debe elegir FILE/New/M-File en el menú de MATLAB. Si las cosas
están "en orden" se abrirá el Editor&Debugger para
que se pueda editar ese fichero. Una vez abierto el
Editor, se deben teclear las 2 líneas siguientes:

function y=prueba(x)
y = 1./((x-.3).^2+.01)+1./...
 ((x-.9).^2+.04)-6;

guardándolo después con el nombre de prueba.m. La
definición de funciones se ha visto con detalle en el
apartado 6.3.2, a partir de la página 68. El fichero
anterior ha definido una nueva función que puede ser
utilizada como cualquier otra de las funciones de
MATLAB. Antes de seguir adelante, conviene ver el
aspecto que tiene esta función que se acaba de crear.
Para dibujar la función prueba, tecléense los siguien-
tes comandos:

>> x=-1:0.1:2;
>> plot(x,prueba(x))

El resultado aparece en la Figura 31. Ya se está en condiciones de intentar hacer cálculos y pruebas
con esta función.

6.10.1. INTEGRACIÓN NUMÉRICA DE FUNCIONES

Lo primero que se va a hacer es calcular la integral definida de esta función entre dos valores de la
abscisa x. En inglés, al cálculo numérico de integrales definidas se le llama quadrature. Sabiendo
eso, no resulta extraño el comando con el cual se calcula el área comprendida bajo la función entre
los puntos 0 y 1 (obsérvese que la referencia de la función a integrar se pasa por medio del operador
@ precediendo al nombre de la función. También podría crearse una variable para ello):

>> area = quad(@prueba, 0, 1)
area =
 29.8583

Si se teclea help quad se puede obtener más de información sobre esta función, incluyendo el mé-
todo utilizado (Simpson) y la forma de controlar el error de la integración.

La función quadl() utiliza un método de orden superior (Lobatto), mientras que la función
dblquad() realiza integrales definidas dobles y la función triplequad() realiza integrales de volu-
men. Ver el Help o los manuales online para más información.

6.10.2. ECUACIONES NO LINEALES Y OPTIMIZACIÓN

Después de todo, calcular integrales definidas no es tan difícil. Más difícil es desde luego calcular
las raíces de ecuaciones no lineales, y el mínimo o los mínimos de una función. MATLAB dispone
de las tres funciones siguientes:

fzero calcula un cero o una raíz de una función de una variable
fminbnd calcula el mínimo de una función de una variable
fminsearch calcula el mínimo de una función de varias variables
optimset permite establecer los parámetros del proceso de cálculo

Se empezará con el cálculo de raíces. Del gráfico de la función prueba entre -1 y 2 resulta evidente
que dicha función tiene dos raíces en ese intervalo. La función fzero calcula una y se conforma:

Figura 31. Función “prueba”.

Capítulo 6: Programación de MATLAB página 85

¿Cuál es la que calcula? Pues depende de un parámetro o argumento que indica un punto de partida
para buscar la raíz. Véanse los siguientes comandos y resultados:

>> fzero(@prueba, -.5)
ans =
 -0.1316
>> fzero(@prueba, 2)
ans =
 1.2995

En el primer caso se ha dicho al programa que empiece a buscar en el punto -0.5 y la solución en-
contrada ha sido -0.1316. En el segundo caso ha empezado a buscar en el punto de abscisa 2 y ha
encontrado otra raíz en el punto 1.2995. Se ven claras las limitaciones de esta función.

La función fzero() tiene también otras formas interesantes:

fzero(@prueba, [x1,x2]) calcula una raíz en el intervalo x1-x2. Es necesario que la fun-
ción tenga distinto signo en los extremos del intervalo.

fzero(@prueba, x, options) calcula la raíz más próxima a x con ciertas opciones definidas
en la estructura options. Esta estructura se crea con la función
optimset.

La función optimset tiene la siguiente forma general:
options = optimset('param1',val1,'param2',val2,...

en la que se indican los nombres de los parámetros u opciones que se desean modificar y los valores
que se desea dar para cada uno de dichos parámetros. Una segunda forma general es:

options = optimset(oldopts, 'param1',val1,'param2',val2,...)

en la que se obtienen unas nuevas opciones modificando unas opciones anteriores con una serie de
parejas nombre-valor de parámetros.

Existen muchas opciones que pueden ser definidas por medio de la función optimset. Algunas de las
más características son las siguientes (las dos primeras están dirigidas a evitar procesos iterativos
que no acaben nunca y la tercera a controlar la precisión en los cálculos):

MaxFunEvals máximo número de evaluaciones de función permitidas
MaxIter máximo número de iteraciones
TolX error máximo permitido en la abscisa de la raíz

Ahora se va a calcular el mínimo de la función prueba. Defínase una función llamada prueba2 que
sea prueba cambiada de signo, y trátese de reproducir en el PC los siguientes comandos y resulta-
dos (para calcular máximos con fmin bastaría con cambiar el signo de la función):

>> plot(x,prueba2(x))
>> fminbnd(@prueba2, -1,2)
ans =
 0.3004
>> fminbnd(@prueba2, 0.5,1)
ans =
 0.8927

También a la función fminbnd se le puede pasar la estructura options. Por ejemplo, para fijar un
error de 10-08 se puede proceder del siguiente modo:

>> options=optimset('TolX', 1e-08);
>> fminbnd(@prueba2, 0.5,1, options)

Aprenda Matlab 7.0 como si estuviera en Primero página 86

En cualquier caso, es importante observar que para calcular las raíces o los valores mínimos de una
función, hay que pasar el nombre de esta función como argumento a la función de MATLAB que va
a hacer los cálculos. En esto consiste el concepto de función de función.

MATLAB tiene un toolbox o paquete especial (que debe ser adquirido aparte)) con muchas más
funciones orientadas a la optimización, es decir al cálculo de valores mínimos de funciones, con o
sin restricciones.

6.10.3. INTEGRACIÓN NUMÉRICA DE ECUACIONES DIFERENCIALES ORDINARIAS

Este es otro campo en el que las capacidades de MATLAB pueden resultar de gran utilidad a los
ingenieros o futuros ingenieros interesados en la simulación. MATLAB es capaz de calcular la evo-
lución en el tiempo de sistemas de ecuaciones diferenciales ordinarias de primer orden, lineales y no
lineales. Por el momento se supondrá que las ecuaciones diferenciales se pueden escribir en la for-
ma:

 ()� ,y f y= t (7)

donde t es la variable escalar, y tanto y como su derivada son vectores. Un ejemplo típico puede ser
el tiro parabólico, considerando una resistencia del aire proporcional al cuadrado de la velocidad.
Se supone que dicha fuerza responde a la siguiente expresión vectorial:

 ()
F
F c x y

x
y

x

y

⎧
⎨
⎩

⎫
⎬
⎭

= − +
⎧
⎨
⎩

⎫
⎬
⎭

� �
�
�

2 2 (8)

donde c es una constante conocida. Las ecuaciones diferenciales del movimiento serán:

 ()2 201x xc x yy mg ym
⎛ ⎞⎧ ⎫ ⎧ ⎫ ⎧ ⎫= − +⎨ ⎬ ⎨ ⎬ ⎨ ⎬⎜ ⎟−⎩ ⎭ ⎩ ⎭ ⎩ ⎭⎝ ⎠

�� �� ��� � (9)

pero éste es un sistema de 2 ecuaciones diferenciales de orden 2. Para poderlo integrar debe tener la
forma del sistema (7), y para ello se va a trasformar en un sistema de 4 ecuaciones diferenciales de
primer orden, de la forma siguiente:

 ()
�
�
�
�

u
v
x
y

g
u
v

c
m

u v

u
v

⎧

⎨
⎪⎪

⎩
⎪
⎪

⎫

⎬
⎪⎪

⎭
⎪
⎪

=
−

⎧

⎨
⎪⎪

⎩
⎪
⎪

⎫

⎬
⎪⎪

⎭
⎪
⎪

− +

⎧

⎨
⎪⎪

⎩
⎪
⎪

⎫

⎬
⎪⎪

⎭
⎪
⎪

0

0
0

2 2 (10)

MATLAB dispone de varias funciones para integrar sistemas de ecuaciones diferenciales ordinarias
de primer orden, entre ellas ode23, que utiliza el método de Runge-Kutta de segundo/tercer orden, y
ode45, que utiliza el método de Runge-Kutta-Fehlberg de cuarto/quinto orden. Ambas exigen al
usuario escribir una función que calcule las derivadas a partir del vector de variables, en la forma
indicada por la ecuación (7).

Cree con el Editor/Debugger un fichero llamado tiropar.m que contenga las siguientes líneas:
function deriv=tiropar(t,y)
fac=-(0.001/1.0)*sqrt((y(1)^2+y(2)^2));
deriv=zeros(4,1);
deriv(1)=fac*y(1);
deriv(2)=fac*y(2)-9.8;
deriv(3)=y(1);
deriv(4)=y(2);

Capítulo 6: Programación de MATLAB página 87

En el programa anterior se han supuesto unas constantes con los valores de c=0.001, m=1 y g=9.8.
Falta fijar los valores iniciales de posición y velocidad. Se supondrá que el proyectil parte del ori-
gen con una velocidad de 100 m/seg y con un ángulo de 30º, lo que conduce a los valores iniciales
siguientes: u(0)=100*cos(pi/6), v(0)=100*sin(pi/6), x(0)=0, y(0)=0. Los comandos para realizar la
integración son los siguientes (se suponen agrupados en un fichero tiroparMain.m):

% fichero tiroparMain.m
% intervalo de integración
tspan=[0,9];
% condiciones iniciales
y0=[100*cos(pi/6) 100*sin(pi/6) 0 0]';
% llamar a la función de integración numérica
[t,Y]=ode45(@tiropar,tspan,y0);
% dibujo de la altura en función del tiempo
plot(t,Y(:,4)), grid
disp('Ya he terminado')

En estos comandos tspan es un vector que define el
intervalo temporal de integración. Es muy importante
que en la función ode45, el vector de condiciones ini-
ciales y0 sea un vector columna. El vector t devuelto
por ode45 contiene los valores del tiempo para los cua-
les se ha calculado la posición y velocidad. Dichos va-
lores son controlados por la función ode45 y no por el
usuario, por lo que de ordinario no estarán igualmente
espaciados. La matriz de resultados Y contiene cuatro
columnas (las dos velocidades y las dos coordenadas de
cada posición) y tantas filas como elementos tiene el
vector t. En la Figura 32 se muestra el resultado del
ejemplo anterior (posición vertical en función del tiem-
po).

MATLAB dispone de varias funciones para la integra-
ción de sistemas de ecuaciones diferenciales ordinarias. Se pueden citar las siguientes, clasificadas
según una característica de las ecuaciones que se desea integrar:

Sistemas no-rígidos ode23, ode45 y ode113
Sistemas rígidos ode15s, ode23s, odq23t y ode23tb

La rigidez (stiffness, en la literatura inglesa) es una característica de muchos sistemas de ecuaciones
diferenciales ordinarias que aparecen en la práctica y que los hace más difíciles de resolver. Una
explicación detallada de esta característica excede la finalidad de este manual, pero sí se puede dar
una muy breve explicación.

Muchos integradores numéricos están basados en fórmulas que permiten predecir el valor de la fun-
ción en t+Δt a partir del valor de la función y de su derivada en el instante t y anteriores:

 (), ,..., , ,...,t t t t t t t tf t+Δ −Δ −Δ=y y y y y� � (11)

A estos integradores se les llama integradores explícitos. Todo lo que necesitan es que el usuario
programe una función que calcule la derivada en la forma indicada en la ecuación (7).

En la solución de un sistema de ecuaciones diferenciales ordinarias aparecen combinadas diversas
componentes oscilatorias (tipo seno, coseno o similar). Algunas de estas componentes oscilan más
rápidamente que otras (tienen una frecuencia más elevada). Los problemas rígidos o stiff son aque-
llos en cuya solución participan componentes de frecuencias muy diferentes (muy altas y muy ba-

Figura 32. Tiro parabólico (posición vertical

en función del tiempo).

Aprenda Matlab 7.0 como si estuviera en Primero página 88

jas). Todos los integradores de MATLAB tienen control automático del error. Quiere esto decir que
el usuario fija el error que está dispuesto a admitir en la solución y MATLAB ajusta el paso de la
integración para conseguir ese error. Los integradores explícitos detectan la posible presencia de
componentes de alta frecuencia en la solución y tratan de adaptar a ellas su paso, que se hace dema-
siado pequeño y termina por detener la integración.

Los integradores implícitos son mucho más apropiados para los problemas stiff. En lugar de utilizar
fórmulas del tipo de la ecuación (11) utilizan fórmulas del tipo:

 (), , ,..., , , ,...,t t t t t t t t t t t tf t+Δ +Δ −Δ +Δ −Δ=y y y y y y y� � � (12)

El problema con la expresión (12) es que para calcular la función en t+Δt hace uso de la derivada en
ese mismo instante, que no puede ser conocida si no se conoce la función. Eso quiere decir que el
sistema (12) es un sistema de ecuaciones no lineales que hay que resolver iterativamente. Los sis-
temas de ecuaciones no lineales se resuelven mucho más rápidamente si se conoce la derivada de la
función (un ejemplo es el método de Newton-Raphson). Los integradores stiff de MATLAB son
capaces de calcular esta derivada numéricamente (por diferencias finitas), pero son mucho más efi-
cientes si el usuario es capaz de escribir una segunda función que les dé esta derivada. Esta deriva-
da, que en realidad es una matriz de derivadas, es la Jacobiana. Los integradores stiff, además de la
ecuación (7), permiten para el sistema de ecuaciones diferenciales una forma algo más especializa-
da:

 (,) ()t tM y y - f y, = 0� (13)

en cuyo caso el usuario también tiene que proporcionar una función que calcule la matriz M(y,t). La
ecuación (13) representa un gran número de casos prácticos, por ejemplo los que surgen de las
ecuaciones diferenciales del movimiento en Mecánica.

La forma más básica para todos los integradores de MATLAB es la siguiente:
[t, Y] = solvername(fh, tspan, y0)

donde fh es una referencia de la función que permite calcular la derivada según la expresión (7),
tspan puede ser un vector de dos elementos [tini, tfinal] que representan el comienzo y el fin de la
integración o un vector de tiempos [tini:tstep:tfinal] en los cuales se desea que MATLAB devuelva
resultados, e y0 es un vector columna con los valores iniciales. Como resultado se obtiene el vector
t de tiempos en los que se dan resultados y una matriz Y con tantas filas como tiempos de salida y
que representan cada una de ellas la salida en el correspondiente instante de tiempo.

Una forma más elaborada de llamar a los integradores de MATLAB es la siguiente:
[t, Y] = solvername(fh, tspan, y0, options)

donde options es una estructura similar a la vista en el apartado anterior para el cálculo de raíces y
mínimos de funciones. En este caso la estructura options (que es diferente de la anterior, aunque se
esté utilizando el mismo nombre) se determina por medio de la función odeset, que admite las for-
mas siguientes:

options = odeset('param1', val1,'param2', val2, ...);

options = odeset(oldopt, 'param1', val1,'param2', val2, ...);

Entre los parámetros u opciones más importantes se pueden citar los siguientes (se puede obtener
más información sobre ellos consultando odeset en el Help. Los parámetros en cursiva serán utili-
zados o explicados en los ejemplos que siguen):

Para el error RelTol , AbsTol, NormControl
Para el paso InitialStep, MaxStep

Capítulo 6: Programación de MATLAB página 89

Para la matriz M Mass, MstateDependence, MvPattern, MassSingular e InitialSlope
Para el Jacobiano Jacobian, JPattern, Vectorized
Para la salida OutputFcn, OutputSel, Refine, Stats

A continuación se va a repetir el ejemplo de tiro parabólico presentado al comienzo de esta Sección
utilizando el integrador implícito ode15s con algunas opciones modificadas. Para ello la ecuación
(10) se va a re-escribir en la forma de la ecuación (13), resultando:

 ()2 2

0 0 0 0
0 0 0
0 0 1 0 0
0 0 0 1 0

m u u
m v mg v

c u v
x u
y v

⎡ ⎤ ⎧ ⎫ ⎧ ⎫ ⎧ ⎫
⎢ ⎥ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪−⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎢ ⎥ = − +⎨ ⎬ ⎨ ⎬ ⎨ ⎬⎢ ⎥ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎢ ⎥ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎣ ⎦ ⎩ ⎭ ⎩ ⎭ ⎩ ⎭

�
�
�
�

 (14)

En este caso el programa principal se ha denominado tiroparMain2 y tiene la siguiente forma:
% fichero tiroparMain2.m
clear all, close all
t0=0; tf=10; npoints=51;
y0=[100*cos(pi/6),100*sin(pi/6),0,0]';
% vector de puntos en los que se desea resultados
tspan=[t0:(tf-t0)/(npoints-1):tf];
% modificación de las opciones por defecto
m=1; M=eye(4); M(1,1)=m; M(2,2)=m;
options = odeset('RelTol',1e-04, 'AbsTol',1e-06, ...
 'Stats','on', 'Mass',M, ...
 'OutputFcn',@odeplot, 'OutputSel',[1,2,3,4]);
% llamada a la función de integración numérica
[t,Y]=ode15s(@tiropar2,tspan,y0,options, m);
% dibujo de la altura del móvil en función del tiempo
figure, plot(t,Y(:,4)), grid
disp('Ya he terminado!')

Obsérvese cómo se han definido nuevas tolerancias para los errores absoluto y relativo, que se ha
activado la opción de imprimir estadísticas y que se le indica al programa que se le da una matriz de
masas constante en una variable llamada M (La otra opción para el argumento 'Mass' es una refe-
rencia a la función que se encargará de calcular la matriz de masas). La función tiropar2 no ha su-
frido cambios importantes respecto a tiropar y es así:

function deriv=tiropar2(t,y, m)
% Ecuación diferencial en la forma
% M*yp=f(t,y);

deriv=zeros(4,1);
fac=-(0.001)*sqrt((y(1)^2+y(2)^2));
deriv(1)=fac*y(1);
deriv(2)=fac*y(2)-9.8*m;
deriv(3)=y(1);
deriv(4)=y(2);

El cambio más importante consiste en que a la función tiropar2 se le ha pasado como argumento la
msa m del proyectil. En efecto, la forma que tiene MATLAB para pasar argumentos desde el pro-
grama principal a las funciones llamadas por el integrador es poner estos argumentos a continuación
de options, en la llamada al integrador. El integrador recoge estos argumentos y los transmite.

El resultado de MATLAB incluye las estadísticas solicitadas y es el siguiente:

Aprenda Matlab 7.0 como si estuviera en Primero página 90

32 successful steps
0 failed attempts
58 function evaluations
1 partial derivatives
9 LU decompositions
51 solutions of linear systems

Una tercera y más sofisticada forma de llamar a los integradores de MATLAB podría ser la que se
muestra a continuación. Aunque se trata de un ejemplo muy sencillo, se han incluido en él muchas
de las características más avanzadas de los integradores de MATLAB, de aplicación en casos mu-
cho más complicados. Los lectores interesados en las técnicas de simulación deben estudiar con
atención el programa que sigue y los comentarios que se acompañan.

1. % fichero tiroparMain3.m
2. function tiroparMain3
3. % Intervalo de integracion
4. t0=0; tf=12; npoints=51;
5. tspan=[t0:(tf-t0)/(npoints-1):tf];
6. % condiciones iniciales
7. y0=[100*cos(pi/6),100*sin(pi/6),0,-10]';
8. % elementos ~=0 en la Jacobiana de f() en la ec. dif. M(t,y)*yp=f(t,y)
9. Jp=sparse([1 1 0 0; 1 1 0 0; 1 0 0 0; 0 1 0 0]);
10. options = odeset('RelTol',1e-06, 'AbsTol',1e-06, 'Mass',@tiropar3Masa, ...
11. 'MStateDep','none', 'OutputFcn',@tiropar3Salida, 'OutputSel',[3,4], ...
12. 'JPattern',Jp, 'Vectorized','on', 'Events',@tiropar3Eventos, 'Stats','on');
13. sol=ode15s(@tiropar3,tspan,y0,options,1,0.001);
14. % forma alternativa de llamar al integrador
15. % [T,Y, tEv, yEv, ev]=ode15s(@tiropar3,tspan,y0,options,1,0.001);
16. % resultados del cálculo de eventos
17. % sol.xe tiempos en los que se ha producido el evento
18. disp('Tiempos de corte con y(4)=0: '), disp(num2str(sol.xe));
19. % sol.ye vector de estado en los instantes del evento
20. disp('Valores del vector de estado en los eventos: '), disp(num2str(sol.ye));;
21. % sol.ie n´umero del evento que se ha producido
22. disp('Eventos que se han producido: '), disp(num2str(sol.ie));
23. T=tspan(find(tspan<sol.xe(2)));
24. % la funcion deval calcula la solucion en los tiempos deseados
25. Y=deval(sol,T);
26. % forma alternativa de llamar al integrador
27. disp('Ya he terminado!')
28.
29. % calculo de la matriz de masas
30. function M=tiropar3Masa(t,m,c)
31. M=diag([m,m,1,1]);
32.
33. % función para controlar la salida de resultados
34. function status=tiropar3Salida(t,y,flag,m,c)
35. % se llama a tiropar3Salida() en cada punto de salida y
36. % esta función se encarga de llamar a odeplot
37. status=0;
38. switch flag
39. case 'init'
40. disp(['Entrando en salidaTiropar3 por primera vez']);
41. odeplot(t,y,'init');
42. case 'done'
43. disp(['Entrando en salidaTiropar3 por última vez']);
44. odeplot([],[],'done');
45. case ''
46. % puede haber resultados para más de un tiempo de salida
47. for i=1:length(t)
48. disp(['Entrando en salidaTiropar4 para t=',num2str(t(i))]);
49. odeplot(t(i),y(:,i));
50. end
51. end
52.

Capítulo 6: Programación de MATLAB página 91

53. % funcion para controlar los eventos
54. function [valor,esFinal,direccion]=tiropar3Eventos(t,y,m,c)
55. if y(2)>0
56. valor = y(4); % unico valor que se controla
57. esFinal = 0; % no termina la integración al llegar al suelo
58. direccion = 1; % llegar al suelo en dirección ascendente
59. else
60. valor = y(4);
61. esFinal = 1; % termina la integración al llegar al suelo
62. direccion = -1; % llegar al suelo en dirección descndente
63. end

Por otra parte, el fichero tiropar3.m que evalúa la ecuación diferencial es el siguiente:
1. function dy=tiropar3(t,y,m,c) % version vectorizada
2. fac=-c*sqrt(y(1,:).^2+y(2,:).^2);
3. dy=zeros(size(y));
4. dy(1,:)=fac.*y(1,:);
5. dy(2,:)=fac.*y(2,:)-9.8*m;
6. dy(3,:)=y(1,:);
7. dy(4,:)=y(2,:);

Sobre las funciones definidas en el fichero tiropar3Main.m se pueden hacer los siguientes comenta-
rios:

1. El programa se ha definido como función sin argumentos (línea 2) y no como fichero de co-
mandos. La razón es para poder utilizar sub-funciones (funciones definidas en el mismo fi-
chero), que no están permitidas en los ficheros de comandos.

2. Las condiciones iniciales (línea 7) se parecen a las de los ejemplos anteriores, pero el movi-
miento comienza con una ordenada negativa (por debajo del origen). Este hecho se utilizará
en relación con los eventos.

3. Las ecuaciones diferencias se suponen en la forma de la ecuación (14) ((,) (,)t t=M y y f y�),
que permite proporcionar más información al integrador. En la línea 9 se define una matriz
dispersa con "unos" en las posiciones correspondientes a los términos distintos de cero de la
matriz Jacobiana del segundo miembro, esto es, a las derivadas parciales distintas de cero del
vector f(t,y) respecto al vector y. El integrador ode15s va a calcular dichas derivadas numéri-
camente y la información contenida en la matriz Jp sobre los términos no nulos le permite
ahorrar mucho trabajo.

4. La estructura options, definida en las líneas 10-12, tiene una gran importancia, pues controla
los aspectos fundamentales de la integración. Como ya se ha dicho, sus valores se establecen
en la forma de parejas parámetro/valor. Los primeros argumentos son los valores de las tole-
rancias de error relativo y absoluto, ya comentados previamente. A continuación se comentan
las restantes opciones. En los nombres de los parámetros MATLAB no distingue entre ma-
yúsculas y minúsculas y no hace falta escribirlos con todas las letras: basta poner suficientes
letras para evitar la ambigüedad en el nombre. Por ejemplo, MStateDep y mstate serán consi-
derados como equivalentes a MStateDependence. Es conveniente sin embargo que la elección
de estos nombres no afecte a la legibilidad del código.

5. La tercera pareja de argumentos de options declara que la matriz de masas (parámetro Mass)
es definida por la función tiropar3Masa, cuya referencia se da como valor. Otra posibilidad
es la que se ha utilizado antes: cuando la matriz de masas es constante, se calcula previamente
su valor y se incluye el nombre de la variable como valor de este argumento. La línea 11 in-
cluye el argumento MStateDep, también relacionado con la matriz de masas, que establece el
tipo de dependencia de dicha matriz respecto al vector de estado y. Sus posibles valores son
none, weak y strong. Otro argumento relacionado con la matriz de masas, no utilizado en este
ejemplo, es MvPattern, cuyo valor debe ser una matriz sparse análoga a Jp, utilizada para de-

Aprenda Matlab 7.0 como si estuviera en Primero página 92

finir la dependencia de los elementos de la matriz de masas respecto al vector y (su sparsity
pattern).

6. El parámetro OutputFcn permite al usuario controlar la salida de resultados a medida que se
van haciendo los cálculos y no solamente al final. El valor de este parámetro es una referencia
de función (@tiropar3Salida) que será utilizada por el integrador varias veces a lo largo de la
integración. MATLAB dispone de cuatro funciones de salida preprogramadas (odeplot, odep-
has2, odephas3 y odeprint) que pueden ser utilizadas sin más que pasar como valor una refe-
rencia a ellas. En este caso se ha programado una función de salida llamada tiropar3Salida
que está definida a partir de la línea 34. Esta función se llama al inicio de la integración, en
cada instante de salida de resultados y al terminar la integración. El parámetro OutputSel
permite definir los elementos del vector de estado en los que se está interesado. En este caso
se le han pasado como valor el vector [3, 4], lo que hará que la función de salida reciba las
posiciones y no las velocidades (que están en las dos primeras posiciones del vector de estado
y).

7. La Jacobiana de la función f(t,y) respecto al vector y tiene una gran importancia, sobre todo
en problemas stiff. El usuario puede proporcionar una Jacobiana al integrador, pero si no lo
hace éste la calcula numéricamente. El usuario puede también proporcionar una referencia de
función que calcule una Jacobiana analíticamente (de modo exacto o aproximado) por medio
del parámetro Jacobian. Cuando no se utiliza este parámetro, el integrador calcula la Jacobia-
na numéricamente y también en este caso el programador puede ayudar a acelerar mucho los
cálculos. El parámetro JPattern, ya comentado previamente, permite indicar al integrador qué
elementos de la Jacobiana son distintos de cero. Además, como una Jacobiana contiene n2 de-
rivadas parciales y cada derivada se calcula a partir de la diferencia entre dos evaluaciones de
f(t,y), este cálculo puede ser muy costoso para valores grandes de n. El parámetro JPattern
permite reducir el cálculo de derivadas numéricas. Además, el parámetro Vectorized permite
realizar este cálculo mucho más rápidamente utilizando las capacidades vectoriales de MA-
TLAB; sus posibles valores son on y off. Más adelante se verá cómo se ha vectorizado en este
ejemplo la función tiropar3.

8. El penúltimo parámetro que aparece en la estructura options es Events. Este parámetro puede
tener una gran importancia en simulación. En este contexto, se llaman eventos a todas aque-
llas circunstancias que pueden acaecer a lo largo de la simulación y que cambian su naturaleza
u obligan a tomar una decisión. Por ejemplo, si se está simulando el movimiento de un vehí-
culo todo terreno, cada vez que las ruedas pierden o vuelven a tomar contacto con el suelo se
produce un cambio en el sistema a simular, pues se eliminan o añaden ecuaciones y grados de
libertad. Los eventos de MATLAB permiten detectar semi-automáticamente estas situaciones
y tomar las medidas adecuadas. En el ejemplo de tiro parabólico que se está considerando el
único evento que se va a considerar es que el proyectil llegue al suelo, es decir, que su coor-
denada y se anule (se supone que el suelo es la superficie y=0). El valor del parámetro Events
es la referencia de la función de usuario que se ocupará de gestionarlos.

9. El último parámetro de options es Stats, que cuando está en on hace que el integrador calcule
e imprima las estadísticas sobre el trabajo que ha sido necesario en la integración.

10. La línea 13 contiene la llamada al integrador, en este caso a la función ode15s. La línea 15
muestra −comentada, para que no se ejecute− una forma alternativa de realizar esta llamada.
En el primer caso, que fue una novedad de la versión 6.0 de MATLAB, el integrador entrega
todos los resultados como campos de una estructura, que en este caso se ha llamado sol. El lis-
tado del programa indica los significados de los campos más importantes: sol.x es un vector
con los tiempos en los que se devuelven resultados y sol.y es una matriz cuyas filas son los re-

Capítulo 6: Programación de MATLAB página 93

sultados correspondientes. Si están activados los eventos hay tres campos adicionales xe, ye e
ie, que representan respectivamente los instantes de tiempo en que se han producido los even-
tos, los valores del vector de estado en esos instantes de tiempo, y el evento concreto (pueden
controlarse varios eventos diferentes) que se ha producido en cada uno de esos instantes.

11. Tanto en la línea 13 como en la 15 aparecen detrás de options dos argumentos adicionales
que representan la masa m (1) y el amortiguamiento c (0.001). Todos los argumentos que apa-
rezcan detrás de options son siempre considerados argumentos adicionales por el integrador,
que se limita a recogerlos y pasárselos a todas las funciones de usuario tales como tiropar3,
tiropar3Masa, etc. El integrador es un mero transmisor de argumentos entre el programa
principal y las restantes funciones de usuario. Es muy importante que todas las funciones de
usuario recojan estos argumentos adicionales aunque no los necesiten, pues en otro caso se
obtiene un error de insuficiente número de argumentos. Obsérvese que estos argumentos apa-
recen en las líneas 30, 34 y 54.

12. Los integradores de MATLAB pueden dar el resultado por medio de una estructura (como en
la línea 13) o por medio de diversos valores de retorno (como en la línea 15 y en los ejemplos
anteriores). Se utiliza una u otra forma en función del número de valores de retorno que espe-
ra recibir el usuario.

13. Cuando el resultado del integrador se recibe por medio de una estructura, los instantes en los
que se proporcionan resultados no coinciden con los valores intermedios de tspan, sino que
son valores elegidos por el integrador, al igual que en el caso en que tspan sólo contenga el
instante inicial y el final (tspan=[tini, tend];). Si se desean resultados en intervalos igual-
mente espaciados elegidos por el usuario, puede utilizarse la función deval (ver línea 25), que
fue otra novedad de MATLAB 6.0. Si a esta función se le pasa la estructura solución sol y un
vector con los instantes de tiempo en los que se desea solución, deval devuelve una matriz cu-
yas filas son el vector solución en dichos instantes de tiempo.

14. La línea 30 muestra el comienzo de la función tiropar3Masa, que calcula la matriz de masas
del sistema de ecuaciones diferenciales (14). Es muy importante que los argumentos sean los
que se indica en esa línea. El argumento t aparece porque se supone que la matriz M varía con
el tiempo y no con el vector de estado y. Si se considerara constante (como en realidad es en
este caso) se podía haber pasado directamente como valor del parámetro Mass en odeset. Con
MStateDep igual a none se ha indicado que la matriz de masas no depende de y, y por eso di-
cho vector no se pasa como argumento. Por otra parte, como a todas las funciones de usuario,
el integrador le pasa los dos argumentos adicionales m=1 y c=0.001 que aparecen al final de
la llamada al integrador en la línea 13.

15. La función tiropar3Salida en la línea 34 tiene un tercer argumento llamado flag (señal, marca
o bandera). A lo largo de la integración del programa esta función es llamada con tres valores
diferentes de flag. Al principio de todo se llama con flag igual a 'init'; después, a lo largo de
la integración, se llama en cada instante de salida con flag igual a la cadena vacía ' '; cuando
la integración ha terminado se llama con flag igual a 'done' para que el usuario pueda hacer
las últimas operaciones antes de terminar. El programador debe decidir el uso que hace de es-
tas posibilidades. En este caso, la función tiropar3Salida lo único que hace es imprimir un
mensaje por la consola y llamar a la función odeplot, que es una de las funciones estándar de
MATLAB. Es importante observar el código de las líneas 46-50: este código es necesario
porque el integrador consigue dar pasos tan grandes que puede haber varios puntos de salida
dentro de un único paso. En este caso, el argumento t es un vector con los diversos tiempos de
salida e y es una matriz cuyas columnas son los vectores de estado en cada punto de salida. Si
no se introduce el bucle for de la línea 47 el programa da error.

Aprenda Matlab 7.0 como si estuviera en Primero página 94

16. Llega el momento de hacer unos comentarios sobre la función que maneja los eventos. El in-
tegrador necesita del usuario para detectar los eventos que se pueden producir a lo largo de la
simulación. Para MATLAB un evento es siempre una variable cuyo valor pasa por cero,
bien en dirección ascendente o descendente. Esa variable puede ser una coordenada, una dis-
tancia, una fuerza, ... Si en vez de hacerse cero tiene que alcanzar un valor determinado, bas-
tará controlar la diferencia correspondiente. El usuario debe decir pues al integrador qué valo-
res tiene que controlar. Esto se hace por medio de los valores de retorno de la función que
gestiona les eventos, en este caso tiropar3Eventos (ver línea 54). El primer valor de retorno,
valor, es la variable cuyo paso por cero hay que vigilar (puede ser un vector de valores a con-
trolar). El segundo valor de retorno, esFinal, indica si la ejecución se debe terminar o no
cuando se produzca el evento, lo cual dependerá del caso estudiado y del propósito del pro-
gramador. El tercer y último valor de retorno, direccion, indica cómo es el paso por cero, si
con derivada positiva o creciendo (valor 1), o con derivada negativa o decreciendo (valor –1).
La función tiropar3Eventos muestra un ejemplo de cómo se generan estos valores: el valor a
controlar es la ordenada del móvil, que viene dada por y(4). El evento es final cuando el mó-
vil impacta con el suelo en su trayectoria descendente (velocidad y(2)<0), pero no cuando está
subiendo (velocidad y(2)>0). De hecho, se produce un primer evento al poco tiempo de ser
disparado (ya que parte de un punto con ordenada negativa), pero este evento no detiene la
simulación. El segundo evento sí la para, pues se produce con trayectoria descendente.

17. Finalmente, es necesario explicar la función tiropar3, que se incluye en la página 91. Dicha
función está vectorizada, esto es, es capaz de recibir como argumento varios vectores de esta-
do (columnas de la matriz y) y calcular los correspondientes valores del vector de derivadas,
que serán las columnas de la matriz dy. Para vectorizar esta función se ha hecho uso de los
operadores (.*) y (.^). Cada fila de la matriz resultado dy se calcula con una única instrucción,
en función de las filas de la matriz y. Esta simple modificación (en otros ejemplos puede ser
mucho más complicada) hace que los cálculos sean mucho más eficientes.

No se puede entrar con más detenimiento en estas cuestiones especializadas. Para el lector interesa-
do en estos problemas se recomienda acudir a la ayuda de MATLAB, concretamente al tema titula-
do Initial Value Problem Solvers, accesible desde la ventana principal del Help de MATLAB en
Mathematics, Differential Equations, Initial Value Problems for ODEs and DAEs. También pue-
de ser muy útil consultar la información que aparece sobre MATLAB ODE Suite, en la sección de
Printable Documentation (PDF), en la ventana de Help. Estos documentos contienen una explica-
ción muy detallada de todas las posibilidades de las funciones referidas, así como numerosos ejem-
plos.

6.10.4. LAS FUNCIONES EVAL, EVALC, FEVAL Y EVALIN

Estas funciones tienen mucho que ver con las cadenas de caracteres, ya que necesitan la flexibilidad
de éstas para alcanzar todas sus posibilidades. Las funciones para manipular cadenas de caracteres
se verán en un próximo apartado.

La función eval('cadena de caracteres') hace que se evalúe como expresión de MATLAB el texto
contenido entre las comillas como argumento de la función. Este texto puede ser un comando, una
fórmula matemática o -en general- cualquier expresión válida de MATLAB. La función eval debe
tener los valores de retorno necesarios para recoger los resultados de la expresión evaluada.

Esta forma de definir macros es particularmente útil para pasar nombres de función a otras funcio-
nes definidas en ficheros *.m.

El siguiente ejemplo va creando variables llamadas A1, A2, ..., A10 utilizando la posibilidad de
concatenar cadenas antes de pasárselas como argumento a la función eval:

Capítulo 6: Programación de MATLAB página 95

for n = 1:10
 eval(['A',num2str(n),' = magic(n)'])
end

La función eval() se puede usar también en la forma eval('tryString', 'catchString'). En este caso se
evalúa la cadena 'tryString', y si se produce algún error se evalúa la cadena 'catchString'. Es una
forma simplificada de gestionar errores en tiempo de ejecución.

La función T=evalc() es similar a eval() pero con la diferencia de que cualquier salida que la expre-
sión pasada como argumento hubiera enviado a la ventana de comandos de MATLAB es capturada,
y almacenada en una matriz de caracteres T cuyas filas terminan con el carácter '\n'.

Por su parte la función feval sirve para evaluar, dentro de dicha función, otra función cuya referen-
cia o cuyo nombre contenido en una cadena de caracteres se le pasan como primer argumento. Es
posible que este nombre se haya leído desde teclado o se haya recibido como argumento. A la fun-
ción feval hay que pasarle como argumentos tanto la referencia o el nombre de la función a evaluar
como sus argumentos. Por ejemplo, si dentro de una función se quiere evaluar la función calcu-
lar(A, b, c), donde el nombre calcular o la referencia @calcular se envía como argumento en la
cadena nombre, entonces feval(nombre, A, b, c) equivale a calcular(A, b, c).
Finalmente, la función evalin(ws, 'expresion') evalúa 'expresion' en el espacio de trabajo ws. Los
posibles valores de ws son 'caller' y 'base', que indican el espacio de trabajo de la función que lla-
ma a evalin o el espacio de trabajo base. Los valores de retorno se recogen del modo habitual.

6.11. Distribución del esfuerzo de cálculo: Profiler
El profiler es una utilidad que permite saber qué tiempo de cálculo se ha gastado en cada línea de
una función definida en un fichero *.m o en general de un programa de MATLAB. El profiler tam-
bién puede utilizarse con ficheros de comandos *.m, es decir con programas que no sean funciones.
Permite asimismo determinar el número de llamadas a dicha función, las funciones que la han lla-
mado (parent functions), las funciones llamadas por ella (child functions), etc.

El profiler mejora la calidad de los programas, pues permite detectar los “cuellos de botella” de una
aplicación y concentrar en ellos los esfuerzos para mejorar su eficiencia. Por ejemplo, sabiendo el
número de veces que se llama a una función y el tiempo que cuesta cada llamada, se puede decidir
si es mejor emplear más memoria en guardar resultados intermedios para no tener que calcular va-
rias veces lo mismo.

El profiler ha sido mejorado en las distintas versiones de MATLAB, disponiendo de una interface
de usuario propia (ver Figura 33 y siguientes). Con el profiler se puede medir el tiempo (en centé-
simas de segundo) empleado en cada línea del fichero, en cada llamada a una función e incluso en
cada operador del lenguaje.

Para arrancar la ventana del profiler se puede ejecutar el comando Profiler en el menú Desktop,
utilizar el menú Start/Matlab o simplemente teclear profile viewer en la ventana de comandos. El
resultado será que se abre la ventana que se muestra en la Figura 33.

Ahora se debe introducir en la ventana Run this code el nombre de la función o fichero *.m que se
quiere analizar y después clicar en el botón Start Profiling. Inmediatamente el programa empieza a
ejecutarse bajo la supervisión del profiler, lo cual se sabe porque en la parte superior derecha de la
ventana aparece una marca verde y comienza a correr el tiempo. Al acabar la ejecución se muestra
el resumen de resultados (Profile Summary), que para el programa tiroparMain4.m explicado en el
apartado 6.10.3, es el mostrado en la Figura 34. En esta figura se muestra un informe del nº de veces
que ha sido llamada cada función y del tiempo total que se ha empleado en ella.

Aprenda Matlab 7.0 como si estuviera en Primero página 96

Figura 33. Ventana inicial del Profiler.

Figura 34. Profile Summary para tiroparMain4.

Figura 35. Información sobre la función tiropar4salida.

Figura 36. Información adicional sobre tiropar4salida.

Clicando sobre el enlace a la función tiropar4salida se muestra la información de la Figura 35 y de
la Figura 36. En la parte de arriba de la ventana (Figura 35) se muestra el número de veces que ha
sido llamada cada línea de código y el tiempo empleado en ella. En la parte inferior de la ventana
(Figura 36) aparece una información similar referida al código fuente del fichero. Las sentencias
que se han llevado más tiempo de CPU aparecen coloreadas en un tono rosa de intensidad creciente.

Una información particularmente interesante es la proporcionada bajo el epígrafe M-Lint results,
(no mostrados en las figuras) que contiene sugerencias para mejorar la eficiencia del programa. Por
ejemplo, se avisa de la existencia de variables que se calculan pero no se utilizan posteriormente, de
la existencia de alternativas más eficientes, etc.

El profiler proporciona también información sobre la función padre (la que la ha llamado) y las
funciones hijas de cada función.

Otra forma de llamar al profiler es por medio de la función profile, que se intercala en el código
fuente en la forma (se supone que estas líneas forman parte de un fichero *.m):

profile on -detail 'builtin';
sol=ode15s(@tiropar4,tspan2,y0,options,1,0.001);
profile viewer;

Capítulo 6: Programación de MATLAB página 97

donde la primera línea activa el profiler a la vez que define el grado de detalle que se desea y el
tipo de tiempo que se desea medir. La segunda línea es una llamada a la función ode15s que a su
vez llama a muchas otras funciones y la tercera línea detiene el profiler y le pide un informe con los
resultados calculados. Los informes presentados por el Pprofiler son similares a los de la Figura 34
y siguientes, aunque en este caso no se muestra un informe total sobre la función tiroparMain4,
sino sólo sobre la parte de código que está entre profile on y profile viewer.

Existen dos posibles grados de detalle respecto a la información que se le pide al profiler:

'mmex' determina el tiempo utilizado por funciones y sub-funciones definidas en ficheros
*.m y *.mex. Ésta es la opción por defecto.

'builtin' como el anterior incluyendo las funciones intrínsecas de MATLAB.

Otros posibles comandos relacionados con el profiler de MATLAB son los siguientes:

profile viewer abre la ventana del profiler mostrada en la Figura 34.
profile on activa el profiler poniendo a cero los contadores
profile on –detail level como el anterior, pero con el grado de detalle indicado
profile on –history activa el profiler con información sobre el orden de las llamadas a

las funciones (puede registrar hasta 10000 llamadas)
profile off desactiva el profiler sin poner a cero los contadores
profile resume vuelve a activar el profiler sin poner a cero los contadores
profile clear pone a cero los contadores
s = profile('status') muestra una estructura conteniendo los datos del profile
stats = profile('info') detiene el profiler y muestra una estructura con los resultados (con-

sultar el Help para más información sobre las variables miembro de
estas estructuras)

El profiler se puede aplicar a funciones y a ficheros de comandos. La ejecución de un programa con
el profiler puede ser bastante más lenta que sin él, por el trabajo extra que conlleva.

Aprenda Matlab 7.0 como si estuviera en Primero página 98

7. INTERFACES DE MATLAB CON OTROS LENGUAJES

7.1. Interfaces de MATLAB con DLLs genéricas

7.1.1. INTRODUCCIÓN

Una librería compartida es una colección de funciones ejecutables listas para ser utilizadas en una o
más aplicaciones. En este sentido, MATLAB permite utilizar librerías externas que se hayan gene-
rado en sistemas MS-Windows y Linux.

Los ficheros fuente de la librería se precompilan y ensamblan, y de este modo se obtiene un fichero
con la extensión ".dll" (dynamic link library) en MS Windows o ".so" (shared object) en UNIX y
Linux. En tiempo de ejecución de la aplicación que las va a utilizar las funciones de la librería son
cargadas en memoria y ejecutadas.

MATLAB permite usar las funciones de estas librerías programadas en C. El acceso a las funciones
se realiza a través de una interface de línea de comandos. Esta interface ofrece la posibilidad de
cargar una librería externa en MATLAB y acceder a cualquiera de las funciones definidas en dicha
librería. Aunque los tipos de datos son diferentes en MATLAB y en C, en muchos casos es posible
pasar los tipos de MATLAB a C sin tenerse que preocupar de la conversión de datos, porque MA-
TLAB la realiza de forma automática.

Esta interface permite también usar funciones programadas en otros lenguajes distintos de C siem-
pre que dichas funciones tengan una interface con C. Por ejemplo, es posible llamar a una DLL
programada en Visual Basic si existe un fichero de declaraciones C para dicha librería.

7.1.2. CARGAR Y LIBERAR LAS LIBRERÍAS DE MEMORIA

Para que MATLAB tenga la posibilidad de acceder a una función externa de una librería es necesa-
rio en primer lugar cargar la librería en memoria. Una vez cargada, ya se puede llamar a cualquiera
de sus funciones. Cuando la librería ya no se necesita es conveniente borrarla para liberar memoria.

Para cargar una librería en MATLAB se usa la función loadlibrary. La sintáxis de la función es la
siguiente:

>> loadlibrary('shrlib', 'hfile')

donde shrlib es el nombre de la librería y hfile es el nombre del fichero que contiene la declara-
ción de las funciones (fichero de encabezamiento o header).

Como ejemplo se va a cargar en memoria la librería de MATLAB libmx que contiene las funciones
mx (funciones en C que permiten trabajar con los mxArrays, es decir, con cualquiera de las varia-
bles de MATLAB). En la primera sentencia mostrada a continuación se guarda en la variable hfile
la dirección del fichero matrix.h que contiene la declaración de las funciones mx. La segunda sen-
tencia carga en memoria la librería libmx.dll.

>> hfile = [matlabroot '\extern\include\matrix.h'];
>> loadlibrary('libmx', hfile)

Si ya no se necesitan estas funciones se puede liberar la memoria mediante la función unloadlibra-
ry, en la forma:

>> unloadlibrary libmx

La función libisloaded devuelve un 1 (true) si la función esta cargada y 0 (false) si no lo está. Esta
función se podría utilizar en la forma siguiente:

if libisloaded('libmx')==1 ...

Capítulo 7: Interfaces de Matlab con otros lenguajes página 99

7.1.3. CONSEGUIR INFORMACIÓN ACERCA DE LA LIBRERÍA

Para saber qué funciones tiene disponibles una librería cargada en memoria se pueden usar las dos
siguientes funciones:

>> libfunctions('libname')
>> libfunctionsview('libname')

La principal diferencia es que libfunctions muestra la información en la ventana de comandos de
MATLAB y libfunctionsview muestra la información en una ventana nueva.

Si se usa libfunctions con el nombre de la librería como único argumento MATLAB devuelve los
nombres de las funciones de la librería sin especificar sus argumentos. Éstos son mostrados si se
utiliza la opción "–full". Los tipos de datos que acompañan a los argumentos son los tipos de MA-
TLAB correspondientes a los tipos de C. Como ejemplo obsérvese la siguiente respuesta de MA-
TLAB:

>> libfunctions libmx –full
Functions in library mx:
[int32, MATLAB array, cstring] mxAddField(MATLAB array, cstring)
[cstring, MATLAB array] mxArrayToString(MATLAB array)

Además, la función libfunctionsview crea una nueva ventana donde muestra toda la información de
las funciones disponibles de la librería.

7.1.4. LLAMADA A LAS FUNCIONES DE UNA LIBRERÍA

La función calllib sirve para llamar a las funciones de la librería. Se debe especificar el nombre de
la librería, el nombre de la función y los argumentos que hay que pasar a dicha función:

>> calllib('libname', 'funcname', arg1, ..., argN)

El siguiente ejemplo llama a funciones de la librería libmx:
>> y = rand(4, 7, 2);
>> calllib('libmx', 'mxGetNumberOfElements', y)
ans = 56
>> calllib('libmx', 'mxGetClassID', y)
ans = mxDOUBLE_CLASS

En el paso de argumentos se deben tener en cuenta las siguientes reglas generales:

– Algunos tipos de argumentos muy utilizados en C, tales como punteros o estructuras prede-
finidas, son muy diferentes a los tipos de datos estándar de MATLAB. En estos casos existe
la opción de pasar un tipo de dato estándar de MATLAB y arriesgarse a que MATLAB haga
la conversión, o convertir los datos explícitamente con funciones tales como libstruct y lib-
pointer, que se explicarán más adelante.

– En C muchos argumentos de entrada se pasan normalmente por referencia. Aunque MA-
TLAB no soporta el paso de argumentos por referencia, es posible en MATLAB crear ar-
gumentos compatibles con las referencias de C.

– Las funciones de C suelen devolver resultados por medio de argumentos pasados por refe-
rencia. En este caso, MATLAB crea valores de retorno adicionales para devolver estos valo-
res.

7.1.5. CONVERSIÓN DE DATOS

La Tabla 2 y la Tabla 3 muestran la equivalencia de tipos de datos entre C y MATLAB.

Aprenda Matlab 7.0 como si estuviera en Primero página 100

Tipo de C (en un ordenador de 32 bit) Tipo equivalente de MATLAB
char, byte int8
unsigned char, byte uint8
short int16
unsigned short uint16
int, long int32
unsigned int, unsigned long uint32
float single
double double
char * cstring (1xn char array)
*char[] cell array of strings

Tabla 2. Tipos de datos primitivos de MATLAB.

Tipo de C (en un ordenador de 32 bit) Tipo equivalente de MATLAB
int * intPtr
*char stringPtr
**char stringPtrPtr
float * singlePtr
double * doublePtr
mxArray * Matlab array
void * voidPtr
void ** voidPtrPtr
type ** typePtrPtr

Tabla 3. Tipos de datos extendidos de MATLAB

Para los tipos primitivos, MATLAB automáticamente convierte cualquier argumento de MATLAB
al tipo de dato C esperado. Por ejemplo se puede pasar un double a una función que espera recibir
un integer y MATLAB realiza la conversión. MATLAB también convierte un argumento pasado
por valor a un argumento pasado por referencia, cuando la función externa requiere que el argumen-
to sea pasado de esta forma.

Por ejemplo la siguiente función C, que permuta dos argumentos pasados por referencia, se ha
compilado en una librería llamada swapLibrary:

void swap(double *x, double *y) {
 double aux = *x;
 *x = *y;
 *y = aux;
 return;
}

Se puede llamar a la función de la siguiente manera:
a = 1.78; b = 5.42;
calllib('swapLibrary', 'swap', a, b);

Para argumentos del tipo char* se puede pasar un string de MATLAB.

7.1.6. PASO DE ESTRUCTURAS COMO ARGUMENTOS

Para pasar estructuras como argumentos a funciones de C hay que crear las estructuras equivalentes
en MATLAB. Para ello hay que conocer los nombres de los campos y el tipo de dato de cada cam-
po. Si estos datos son conocidos, bien porque se posee la documentación de la librería, bien porque

Capítulo 7: Interfaces de Matlab con otros lenguajes página 101

se puede encontrar la definición de la estructura en el fichero de declaraciones de la librería, se pue-
de construir directamente la estructura equivalente en MATLAB poniendo los mismos nombres a
los campos.

Si no se conoce el nombre y el tipo de los campos existe otra posibilidad. Por ejemplo, al considerar
las funciones disponibles en una librería se observa la siguiente declaración:

double addStructFields(c_struct)

En este caso se puede emplear la función libstruct de MATLAB, que devuelve un objeto vacio con
una estructura equivalente a la de la estructura de C.

>> s = libstruct('c_struct')

Ahora, con la función get se puede averiguar el nombre de los campos:
>> get(s)
 p1: 0
 p2: 0
 p3: 0

A continuación se pueden dar los valores deseados a los campos y llamar a la función:
>> s.p1 = 476; s.p2 = -299; s.p3 = 1000;
>> calllib('shrlibsample', 'addStructFields', s);

7.1.7. PASO DE ARGUMENTOS POR REFERENCIA

Como se ha comentado anteriormente, MATLAB se encarga de comprobar si los argumentos se han
pasado correctamente y es capaz de convertir un argumento por valor a otro por referencia cuando
es necesario.

En ciertas ocasiones es conveniente utilizar un tipo de dato de MATLAB equivalente a las referen-
cias de C, como por ejemplo:

– Si se desean modificar los datos en los argumentos de entrada.

– Si se está pasando una gran cantidad de datos a la función y no se desea que MATLAB haga
copias de dichos datos (MATLAB sólo saca copias de los argumentos de entrada si son mo-
dificados dentro de la función).

– Cuando un argumento de una función tiene más de un nivel de referencia (puntero a punte-
ro), por ejemplo double **, no es conveniente dejar que Matlab haga la conversión.

En estos casos se puede usar la función libpointer de MATLAB, que sirve para construir punteros a
diferentes tipos de datos. Su sintáxis es la siguiente:

>> p = libpointer('type', 'value')

Esta función se entiende mejor por medio de un ejemplo. A continuación se muestra una función en
C que multiplica por cinco una variable que se ha recibido como argumento pasado por referencia:

double *multDoubleRef(double *x) {
 *x *=5;
 return x;
}

En MATLAB se puede definir la variable, construir una referencia y verificar su contenido:
>> x = 15;
>> xp = libpointer('doublePtr', x);
>> get(xp)
 Value: 15
 DataType: 'doublePtr'

Aprenda Matlab 7.0 como si estuviera en Primero página 102

Finalmente se llama a la función y se comprueba el resultado:
>> calllib('shrlibsample', 'multDoubleRef', xp);
>> get(xp, 'Value')
 ans = 75

7.2. Llamar desde MATLAB funciones programadas en C o Fortran

7.2.1. INTRODUCCIÓN A LOS FICHEROS MEX

Es posible llamar desde MATLAB a funciones programadas en C y en Fortran como si fueran fun-
ciones propias de MATLAB. De este modo, una función *.m de MATLAB puede ser sustituida por
una función programada en C o en Fortran que se llama exactamente en la misma forma. Para que
esto sea posible las funciones programadas en C y Fortran han de cumplir una serie de requisitos
que se explican más adelante. Estas funciones se compilan y se generan librerías compartidas que
son las denominadas funciones MEX. Las funciones MEX son funciones ejecutables "*.dll" ó
"*.so" que pueden ser cargadas y ejecutadas por MATLAB de forma automática.

Las funciones MEX tienen varias aplicaciones:

– Evitan tener que reescribir en MATLAB funciones que ya han sido escritas en C o Fortran.

– Por motivos de eficiencia puede ser interesante reescribir en C o Fortran las funciones críti-
cas o que consumen más CPU del programa.

Las funciones MEX tienen una extensión diferente en función de los sistemas operativos en que
hayan sido generadas. En la siguiente tabla se puede ver la extensión que corresponde a cada siste-
ma operativo.

Sistema operativo Extensión del fichero MEX
Sun Solaris .mexsol
HP-UX .mexhpux
Linux .mexglx
MacIntosh .mexmac
Windows .dll (hasta Matlab 7.0)
 .mexw32 (desde Matlab7.1)

Tabla 4. Extensiones de los ficheros MEX.

Conviene insistir en que se puede llamar un fichero MEX exactamente de la misma forma que se
llama a un fichero *.m de MATLAB. Además, hay que tener en cuenta que si al buscar en el path se
encuentran en el mismo directorio un fichero MEX y un fichero *.m con el mismo nombre, el fiche-
ro MEX tiene precedencia y es el que se ejecuta.

7.2.2. CONSTRUCCIÓN DE FICHEROS MEX

La primera vez que se crea un fichero MEX en un ordenador, hay que comenzar configurando el
compilador que se va a utilizar. Esto se realiza tecleando en la consola de MATLAB:

>> mex -setup

MATLAB responde de la forma siguiente:
Please choose your compiler for building external interface (MEX) files:
Would you like mex to locate installed compilers [y]/n?

Si se contesta afirmativamente, MATLAB localiza los compiladores instalados en el ordenador.
Después pide que se seleccione el compilador que se desea utilizar:

Select a compiler:

Capítulo 7: Interfaces de Matlab con otros lenguajes página 103

[1] Compaq Visual Fortran version 6.6 in C:\ARCHIVOS DE PROGRAMA\MICROSOFT VISUAL STUDIO
[2] Lcc C version 2.4 in C:\MATLAB7\sys\lcc
[3] Microsoft Visual C/C++ version 7.0 in C:\Archivos de programa\Microsoft Visual Studio .NET
[4] Microsoft Visual C/C++ version 6.0 in C:\Archivos de programa\Microsoft Visual Studio
[0] None
Compiler:

Una opción que siempre va a funcionar es seleccionar el compilador de C que incorpora MATLAB
(Lcc, es decir, la opción 2). MATLAB pide que se confirme la elección y a continuación configura
el compilador:

Compiler: 2
Please verify your choices:
Compiler: Lcc C 2.4
Location: C:\MATLAB7\sys\lcc
Are these correct?([y]/n): y
Try to update options file: MathWorks\MATLAB\R14\mexopts.bat
From template: C:\MATLAB7\BIN\WIN32\mexopts\lccopts.bat
Done . . .

NOTA: Conviene tener en cuenta que hasta la versión 7.1 de MATLAB la extensión de los ficheros
MEX era ".dll". A partir de la versión 7.1 es ".mexw32". Esto quiere decir que los ficheros MEX
generados por MATLAB 7.1 no podrán ser ejecutados por versiones anteriores. Para mantener la
compatibilidad se debe utilizar la opción -output con la extensión ".dll" en el nombre del fichero.

La sintaxis del comando para compilar y crear un fichero MEX a partir de lo que se va a llamar un
fichero C-MEX (un fichero C que cumple las condiciones necesarias para poder crear con él un
fichero MEX) es la siguiente:

>> mex filename.c –output filename.dll

El resultado de esta operación es un fichero MEX que en MS Windows se llama filename.dll y que
se almacena en el directorio actual.

Como es fácil de imaginar hay diversas opciones que permiten modificar las etapas de compilación
y linkado de las funciones. Las opciones principales son mostradas en la Tabla 5.

Opción Función
-c Sólo compila no linka
-g El ejecutable incluye información para depurar la función
-O Se optimiza el ejecutable
-outdir <name> Se indica el directorio donde se guarda la función
-output <name> Permite cambiar el nombre del fichero mex
- v Se saca por pantalla cada paso del compilador

Tabla 5. Opciones de la utilidad mex.

7.2.3. CREACIÓN DE FICHEROS MEX EN C

El código fuente de un fichero MEX programado en C tiene dos partes. La primera parte contiene el
código de la función C que se quiere implementar como fichero MEX. La segunda parte es la fun-
ción mexFunction que hace de interface entre C y MATLAB.

La función mexFunction tiene cuatro argumentos: prhs, nrhs, plhs y nlhs. Estos argumentos tie-
nen los siguientes significados:

1. prhs es un vector de punteros a los valores de los argumentos de entrada (right
hand side arguments) que se van a pasar a la función C.

2. nhrs es el número de argumentos de entrada de la función.

Aprenda Matlab 7.0 como si estuviera en Primero página 104

3. plhs y nlhs son análogos pero referidos a los argumentos de salida (left hand side
arguments).

Antes de seguir adelante con esta explicación es conveniente decir algo sobre los mxArrays, que los
únicos objetos con los que trabaja MATLAB. Todos los tipos de variables de MATLAB (escalares,
vectores, matrices, cadenas de caracteres, estructuras, vectores de celdas, etc.) son mxArrays. Para
cada mxArray MATLAB almacena el tipo, las dimensiones, los datos, si es real o complejo (para
datos numéricos), el número de campos y sus nombres para las estructuras, etc. MATLAB dispone
de un gran número de funciones C para trabajar con mxArrays, que pueden encontrarse buscando
"MX Array Manipulation (C)" en el Help. Algunas de estas funciones se deben utilizar para cons-
truir la mexFunction, tal como se explica a continuación.

7.2.4. EJEMPLO DE FUNCIÓN MEX PROGRAMADA EN C

Una función de MATLAB particularmente ineficiente es la función cross, que calcula el producto
vectorial de dos vectores. Dicha función se utiliza en la forma:

>> c = cross(a,b);

Los factores a y b deben ser vectores de dimensión 3, y también el resultado c es un vector de di-
mensión 3. Da igual que sean vectores fila o columna.

El siguiente programa compara tres funciones para calcular el producto vectorial de vectores: la
función cross de MATLAB, la función prodVect.m y la función prodVectC.c. La función prod-
Vect.m se ha programado con MATLAB de la forma siguiente:

function c=prodVect(a,b)
c=zeros(3,1);
c(1)=a(2)*b(3)-a(3)*b(2);
c(2)=a(3)*b(1)-a(1)*b(3);
c(3)=a(1)*b(2)-a(2)*b(1);

Por su parte, la función prodVectC.c es una función C que se va a ejecutar como fichero MEX. A
continuación se muestra el contenido del fichero prodVectC.c, que contiene tanto la función que
calcula el producto vectorial como la mexFunction de interface entre C y MATLAB:

// fichero prodVectC.c
#include "mex.h"

void prodVectC(const double* a, const double* b, double* c) {
 c[0] = a[1]*b[2]-a[2]*b[1];
 c[1] = a[2]*b[0]-a[0]*b[2];
 c[2] = a[0]*b[1]-a[1]*b[0];
}

// This function will be called by Matlab in the form c = prodVectC(a,b);
void mexFunction(int nlhs, mxArray *plhs[], int nrhs, const mxArray *prhs[]) {
 double *a, *b; // inputs
 double *c; // outputs
 // Check for proper number of arguments
 if(nrhs != 2) {
 mexErrMsgTxt("Error in number of inputs.");
 } else if (nlhs != 1) {
 mexErrMsgTxt("Error in number of outputs");
 }
 // Create matrix for the return argument
 plhs[0] = mxCreateDoubleMatrix(3, 1, mxREAL);
 // Assign pointers to each input and output
 a = mxGetPr(prhs[0]); b = mxGetPr(prhs[1]);
 c = mxGetPr(plhs[0]);
 // Call the function written in C
 prodVectC(a,b,c);
}

Capítulo 7: Interfaces de Matlab con otros lenguajes página 105

El siguiente programa de MATLAB utiliza las funciones tic y toc para medir los tiempos con las
tres formas de realizar el producto vectorial:

% fichero pruebaMEX.m
clear all
n=50000;

% Se determina la eficiencia del producto vectorial de Matlab
tic
s=0;
for i=1:n
 a=rand(3,1); b=rand(3,1);
 c=cross(a,b);
 s=s+norm(c);
end
toc

% ahora con un programa *.m propio
tic
s=0;
for i=1:n
 a=rand(3,1); b=rand(3,1);
 c=prodVect(a,b);
 s=s+norm(c);
end
toc

% ahora con un programa propio en C
tic
s=0;
for i=1:n
 a=rand(3,1); b=rand(3,1);
 c=prodVectC(a,b);
 s=s+norm(c);
end
toc
disp('Ya he terminado')

Los resultados que se obtienen en la consola de MATLAB indican que la función en C es la más
eficiente de las tres (aunque éste es un caso particularmente favorable para los compiladores just-in-
time de los ficheros *.m de MATLAB):

>> pruebaMEX
Elapsed time is 5.598874 seconds.
Elapsed time is 1.261900 seconds.
Elapsed time is 0.887502 seconds.
Ya he terminado

A continuación se describe con más generalidad la creación de ficheros MEX. En la Figura 37, ins-
pirada en el Help de MATLAB, se ha querido mostrar cómo se realiza la comunicación entre C y
MATLAB, cómo llegan los datos al fichero MEX, qué es lo que se hace con estos datos en mex-
Function y cómo se devuelven finalmente los resultados a MATLAB.

Aprenda Matlab 7.0 como si estuviera en Primero página 106

Figura 37. Esquema general de creación de una función MEX.

Los ficheros MEX deben incluir la librería "mex.h" donde está declarada la función mexFunction,
cuya cabecera es la siguiente:

void mexFunction(int nlhs, mxArray *plhs[], int nrhs, const mxArray *prhs[])

Como ya se ha dicho, los argumentos plhs y prhs son vectores de punteros a los argumentos de
entrada (right hand side) y de salida (left hand side) del fichero MEX. Hay que señalar que ambos
están declarados de tipo mxArray*, es decir que son variables de MATLAB. En el ejemplo de la
función prodVectC, prhs es un array de dos elementos con dos punteros a dos variables mxArray
llamadas a y b, y plhs es un array de un elemento con un puntero NULL. Este puntero es NULL
porque los argumentos de salida no se crean hasta que se ejecuta la función C, que en este caso es la
función prodVectC. Por este motivo siempre hay que crear arrays para los valores de retorno o sali-
das y asignarlos a los componentes de plhs.

7.2.5. DEPURAR FICHEROS MEX EN C EN WINDOWS

Es interesante poder depurar funciones de cualquier tipo, para poder comprobar que funcionan tal
como se había previsto. Para ello, al compilar se debe incluir la información para el debugger. Esto
se hace con la opción -g.

mex -g filename.c

Se va a explicar para el caso de que se use un compilador de Microsoft. En caso de que se utilicen
otros compiladores se recomienda buscar la información en la documentación de MATLAB.

Para depurar primero se abre una ventana de comandos de DOS y se escribe:
msdev filename.dll

MATLAB
Las llamadas a las funciones MEX
se realizan de la misma forma que
a una función de Matlab. Por
ejemplo:

[c]=prodVectC(a,b);

C
En mexFunction:

Se crean las variables C donde se almacenan los
argumentos de entrada y de salida:

// inputs
double *a, *b;
// outputs
double *c;

Se crean los mxArrays (Matlab arrays) donde se
almacenan los valores de los argumentos de salida:

plhs[0] = mxCreateDoubleMatrix(3, 1, mxREAL);

Se asocian plhs[0], plhs[1],...con las variables puntero de
C creadas:

c = mxGetPr(plhs[0]);

Se extraen los valores de los argumentos de entrada con
la función mxGet:

a = mxGetPr(prhs[0]);
b = mxGetPr(prhs[1]);

Finalmente se llama a la función programa en C:
prodVectC(a,b,c);

MATLAB
Los valores de retorno del fichero
MEX se asocian a los argumentos
de salida: plhs[0] se asocia a c.

Capítulo 7: Interfaces de Matlab con otros lenguajes página 107

Después en el entorno de Microsoft se entra en el menu Project, se selecciona Settings y dentro de
Settings en Debug. Por último en el campo Executable for debug session hay que poner la direc-
ción de MATLAB.

Una vez que se han completado los pasos anteriores se puede abrir el código fuente de la función y
poner break points en las líneas de código que se desee. Se lanza dentro del entorno de Visual Stu-
dio el debug. Ahora es posible ejecutar el fichero MEX en MATLAB y usar el entorno de depura-
ción de Microsoft.

7.2.6. DEPURAR FICHEROS MEX EN C EN UNIX

Es necesario arrancar MATLAB desde el debugger. Para ello hay que especificar el nombre del
debugger que se va a usar con la opción -D al arrancar MATLAB.

Este ejemplo muestra como depurar la función yprime.c en Solaris usando el debugger de UNIX
dbx.

unix> mex -g yprime.c
unix> matlab -Ddbx
<dbx> stop dlopen <matlab>/extern/examples/mex/yprime.mexsol

Una vez que el debugger carga MATLAB en memoria se puede empezar a usar utilizando el co-
mando run:

<dbx> run

Ahora se lanza el fichero MEX que se desea depurar. Antes de ejecutar el fichero MEX el programa
devuelve el control al debugger.

>> yprime(1,1:4)
<dbx> stop in 'yprime.mexsol' mexFunction

Puede que sea necesario informar al debugger de donde se ha cargado el fichero MEX o el nombre
del fichero, en cualquier caso MATLAB solicitará la información que necesite. En este momento se
esta listo para comenzar a depurar. Se puede editar el código fuente del fichero MEX y poner break-
points. Es conveniente poner un breakpoint al comienzo de la mexFunction. Para continuar después
de un breakpoint se emplea el siguiente comando.

<dbx> cont

Cuando el debugger esta parado en un breakpoint es posible utilizar todas las capacidades del de-
bugger para examinar variables, mostrar las posiciones de memoria a inspeccionar el valor de los
registros. Es conveniente estudiar las posibilidades que ofrece el debugger en su documentación.

Aprenda Matlab 7.0 como si estuviera en Primero página 108

8. GRÁFICOS BIDIMENSIONALES
A estas alturas, después de ver cómo funciona este programa, a nadie le puede resultar extraño que
los gráficos 2-D de MATLAB estén fundamentalmente orientados a la representación gráfica de
vectores (y matrices). En el caso más sencillo los argumentos básicos de la función plot van a ser
vectores. Cuando una matriz aparezca como argumento, se considerará como un conjunto de vecto-
res columna (en algunos casos también de vectores fila).

MATLAB utiliza un tipo especial de ventanas para realizar las operaciones gráficas. Ciertos co-
mandos abren una ventana nueva y otros dibujan sobre la ventana activa, bien sustituyendo lo que
hubiera en ella, bien añadiendo nuevos elementos gráficos a un dibujo anterior. Todo esto se verá
con más detalle en las siguientes secciones.

8.1. Funciones gráficas 2D elementales
MATLAB dispone de cinco funciones básicas para crear gráficos 2-D. Estas funciones se diferen-
cian principalmente por el tipo de escala que utilizan en los ejes de abscisas y de ordenadas. Estas
cuatro funciones son las siguientes:

plot() crea un gráfico a partir de vectores y/o columnas de matrices, con escalas linea-
les sobre ambos ejes

plotyy() dibuja dos funciones con dos escalas diferentes para las ordenadas, una a la de-
recha y otra a la izquierda de la figura.

loglog() ídem con escala logarítmica en ambos ejes
semilogx() ídem con escala lineal en el eje de ordenadas y logarítmica en el eje de abscisas
semilogy() ídem con escala lineal en el eje de abscisas y logarítmica en el eje de ordenadas

En lo sucesivo se hará referencia casi exclusiva a la primera de estas funciones (plot). Las demás se
pueden utilizar de un modo similar.

Existen además otras funciones orientadas a añadir títulos al gráfico, a cada uno de los ejes, a dibu-
jar una cuadrícula auxiliar, a introducir texto, etc. Estas funciones son las siguientes:

title('título') añade un título al dibujo
xlabel('tal') añade una etiqueta al eje de abscisas. Con xlabel off desaparece
ylabel('cual') añade una etiqueta al eje de ordenadas. Con ylabel off desaparece
text(x,y,'texto') introduce 'texto' en el lugar especificado por las coordenadas x e y. Si x e y

son vectores, el texto se repite por cada par de elementos. Si texto es también
un vector de cadenas de texto de la misma dimensión, cada elemento se escri-
be en las coordenadas correspondientes

gtext('texto') introduce texto con ayuda del ratón: el cursor cambia de forma y se espera un
clic para introducir el texto en esa posición

legend() define rótulos para las distintas líneas o ejes utilizados en la figura. Para más
detalle, consultar el Help

grid activa la inclusión de una cuadrícula en el dibujo. Con grid off desaparece la
cuadrícula

Borrar texto (u otros elementos gráficos) es un poco más complicado; de hecho, hay que preverlo
de antemano. Para poder hacerlo hay que recuperar previamente el valor de retorno del comando
con el cual se ha creado. Después hay que llamar a la función delete con ese valor como argumento.
Considérese el siguiente ejemplo:

>> v = text(1,.0,'seno')
v =
 76.0001

Capítulo 8: Gráficos bidimensionales página 109

>> delete(v)

Los dos grupos de funciones anteriores no actúan de la misma forma. Así, la función plot dibuja una
nueva figura en la ventana activa (en todo momento MATLAB tiene una ventana activa de entre
todos las ventanas gráficas abiertas), o abre una nueva figura si no hay ninguna abierta, sustituyen-
do cualquier cosa que hubiera dibujada anteriormente en esa ventana. Para verlo, se comenzará
creando un par de vectores x e y con los que trabajar:

>> x=[-10:0.2:10]; y=sin(x);

Ahora se deben ejecutar los comandos siguientes (se comienza cerrando la ventana activa, para que
al crear la nueva ventana aparezca en primer plano):

>> close % se cierra la ventana gráfica activa anterior
>> grid % se crea una ventana con una cuadrícula
>> plot(x,y) % se dibuja la función seno borrando la cuadrícula

Se puede observar la diferencia con la secuencia que sigue:
>> close
>> plot(x,y) % se crea una ventana y se dibuja la función seno
>> grid % se añade la cuadrícula sin borrar la función seno

En el primer caso MATLAB ha creado la cuadrícula en una ventana nueva y luego la ha borrado al
ejecutar la función plot. En el segundo caso, primero ha dibujado la función y luego ha añadido la
cuadrícula. Esto es así porque hay funciones como plot que por defecto crean una nueva figura, y
otras funciones como grid que se aplican a la ventana activa modificándola, y sólo crean una venta-
na nueva cuando no existe ninguna ya creada. Más adelante se verá que con la función hold pueden
añadirse gráficos a una figura ya existente respetando su contenido.

8.1.1. FUNCIÓN PLOT

Esta es la función clave de todos los gráficos 2-D en MATLAB. Ya se ha dicho que el elemento
básico de los gráficos bidimensionales es el vector. Se utilizan también cadenas de 1, 2 ó 3 caracte-
res para indicar colores y tipos de línea. La función plot(), en sus diversas variantes, no hace otra
cosa que dibujar vectores. Un ejemplo muy sencillo de esta función, en el que se le pasa un único
vector como argumento, es el siguiente:

>> x=[1 3 2 4 5 3]
x =
 1 3 2 4 5 3
>> plot(x)

El resultado de este comando es que se abre una
ventana mostrando el gráfico de la Figura 38. Por
defecto, los distintos puntos del gráfico se unen con
una línea continua. También por defecto, el color
que se utiliza para la primera línea es el azul.

Cuando a la función plot() se le pasa un único vec-
tor –real– como argumento, dicha función dibuja en
ordenadas el valor de los n elementos del vector
frente a los índices 1, 2, ... n del mismo en abscisas.
Más adelante se verá que si el vector es complejo,
el funcionamiento es bastante diferente.

En la pantalla de su ordenador se habrá visto que MATLAB utiliza por defecto color blanco para el
fondo de la pantalla y otros colores más oscuros para los ejes y las gráficas.

Figura 38. Gráfico del vector x=[1 3 2 4 5 3].

Aprenda Matlab 7.0 como si estuviera en Primero página 110

Una segunda forma de utilizar la función plot() es con dos vectores como argumentos. En este caso
los elementos del segundo vector se representan en ordenadas frente a los valores del primero, que
se representan en abscisas. Véase por ejemplo cómo se puede dibujar un cuadrilátero de esta forma
(obsérvese que para dibujar un polígono cerrado el último punto debe coincidir con el primero):

>> x=[1 6 5 2 1]; y=[1 0 4 3 1];
>> plot(x,y)

La función plot() permite también dibujar múltiples curvas introduciendo varias parejas de vectores
como argumentos. En este caso, cada uno de los segundos vectores se dibujan en ordenadas como
función de los valores del primer vector de la pareja, que se representan en abscisas. Si el usuario no
decide otra cosa, para las sucesivas líneas se utilizan colores que son permutaciones cíclicas del
azul, verde, rojo, cyan, magenta, amarillo y negro. Obsérvese bien cómo se dibujan el seno y el
coseno en el siguiente ejemplo:

>> x=0:pi/25:6*pi;
>> y=sin(x); z=cos(x);
>> plot(x,y,x,z)

Ahora se va a ver lo que pasa con los vectores complejos. Si se pasan a plot() varios vectores com-
plejos como argumentos, MATLAB simplemente representa las partes reales y desprecia las partes
imaginarias. Sin embargo, un único argumento complejo hace que se represente la parte real en abs-
cisas, frente a la parte imaginaria en ordenadas. Véase el siguiente ejemplo. Para generar un vector
complejo se utilizará el resultado del cálculo de valores propios de una matriz formada aleatoria-
mente:

>> plot(eig(rand(20,20)),'+')

donde se ha hecho uso de elementos que se verán en la siguiente sección, respecto a dibujar con
distintos tipos de “markers” (en este caso con signos +), en vez de con línea continua, que es la op-
ción por defecto. En el comando anterior, el segundo argumento es un carácter que indica el tipo de
marker elegido. El comando anterior es equivalente a:

>> z=eig(rand(20,20));
>> plot(real(z),imag(z),'+')

Como ya se ha dicho, si se incluye más de un vector complejo como argumento, se ignoran las par-
tes imaginarias. Si se quiere dibujar varios vectores complejos, hay que separar explícitamente las
partes reales e imaginarias de cada vector, como se acaba de hacer en el último ejemplo.

El comando plot puede utilizarse también con matrices como argumentos. Véanse algunos ejemplos
sencillos:

plot(A) dibuja una línea por cada columna de A en ordenadas, frente al índice de los
elementos en abscisas

plot(x,A) dibuja las columnas (o filas) de A en ordenadas frente al vector x en abscisas.
Las dimensiones de A y x deben ser coherentes: si la matriz A es cuadrada se
dibujan las columnas, pero si no lo es y la dimensión de las filas coincide con
la de x, se dibujan las filas

plot(A,x) análogo al anterior, pero dibujando las columnas (o filas) de A en abscisas,
frente al valor de x en ordenadas

plot(A,B) dibuja las columnas de B en ordenadas frente a las columnas de A en absci-
sas, dos a dos. Las dimensiones deben coincidir

plot(A,B,C,D) análogo al anterior para cada par de matrices. Las dimensiones de cada par
deben coincidir, aunque pueden ser diferentes de las dimensiones de los de-
más pares

Capítulo 8: Gráficos bidimensionales página 111

Se puede obtener una excelente y breve descripción de la función plot() con el comando help plot o
helpwin plot. La descripción que se acaba de presentar se completará en la siguiente sección, en
donde se verá cómo elegir los colores y los tipos de línea.

8.1.2. ESTILOS DE LÍNEA Y MARCADORES EN LA FUNCIÓN PLOT

En la sección anterior se ha visto cómo la tarea fundamental de la función plot() era dibujar los va-
lores de un vector en ordenadas, frente a los valores de otro vector en abscisas. En el caso general
esto exige que se pasen como argumentos un par de vectores. En realidad, el conjunto básico de
argumentos de esta función es una tripleta formada por dos vectores y una cadena de 1, 2 ó 3 carac-
teres que indica el color y el tipo de línea o de marker. En la tabla siguiente se pueden observar las
distintas posibilidades.

Símbolo Color Símbolo Marcadores (markers)
y yellow . puntos
m magenta o círculos
c cyan x marcas en x
r red + marcas en +
g green * marcas en *
b blue s marcas cuadradas (square)
w white d marcas en diamante (diamond)
k black ^ triángulo apuntando arriba
 v triángulo apuntando abajo

Símbolo Estilo de línea > triángulo apuntando a la dcha
- líneas continuas < triángulo apuntando a la izda
: líneas a puntos p estrella de 5 puntas
-. líneas a barra-punto h estrella se seis puntas
-- líneas a trazos

Tabla 1. Colores, markers y estilos de línea.

Cuando hay que dibujar varias líneas, por defecto se van cogiendo sucesivamente los colores de la
tabla comenzando por el azul, hacia arriba, y cuando se terminan se vuelve a empezar otra vez por
el azul. Si el fondo es blanco, este color no se utiliza para las líneas.

También es posible añadir en la función plot algunos especificadores de línea que controlan el espe-
sor de la línea, el tamaño de los marcadores, etc. Considérese el siguiente ejemplo:

plot(x,y,'-.rs', 'LineWidth',4, 'MarkerEdgeColor','k', 'MarkerFaceColor', 'g',...
 'MarkerSize',10)

8.1.3. AÑADIR LÍNEAS A UN GRÁFICO YA EXISTENTE

Existe la posibilidad de añadir líneas a un gráfico ya existente, sin destruirlo o sin abrir una nueva
ventana. Se utilizan para ello los comandos hold on y hold off. El primero de ellos hace que los
gráficos sucesivos respeten los que ya se han dibujado en la figura (es posible que haya que modifi-
car la escala de los ejes); el comando hold off deshace el efecto de hold on. El siguiente ejemplo
muestra cómo se añaden las gráficas de x2 y x3 a la gráfica de x previamente creada (cada una con
un tipo de línea diferente):

>> plot(x)
>> hold on

Aprenda Matlab 7.0 como si estuviera en Primero página 112

>> plot(x2,'--')
>> plot(x3,'-.')
>> hold off

8.1.4. COMANDO SUBPLOT

Una ventana gráfica se puede dividir en m particiones horizontales y n verticales, con objeto de
representar múltiples gráficos en ella. Cada una de estas subventanas tiene sus propios ejes, aunque
otras propiedades son comunes a toda la figura. La forma general de este comando es:

>> subplot(m,n,i)

donde m y n son el número de subdivisiones en filas y columnas, e i es la subdivisión que se con-
vierte en activa. Las subdivisiones se numeran consecutivamente empezando por las de la primera
fila, siguiendo por las de la segunda, etc. Por ejemplo, la siguiente secuencia de comandos genera
cuatro gráficos en la misma ventana:

>> y=sin(x); z=cos(x); w=exp(-x*.1).*y; v=y.*z;
>> subplot(2,2,1), plot(x,y)
>> subplot(2,2,2), plot(x,z)
>> subplot(2,2,3), plot(x,w)
>> subplot(2,2,4), plot(x,v)

Se puede practicar con este ejemplo añadiendo títulos a cada subplot, así como rótulos para los ejes.
Se puede intentar también cambiar los tipos de línea. Para volver a la opción por defecto basta te-
clear el comando:

>> subplot(1,1,1)

8.1.5. CONTROL DE LOS EJES: FUNCIÓN AXIS()

También en este punto MATLAB tiene sus opciones por defecto, que en algunas ocasiones puede
interesar cambiar. El comando básico es el comando axis. Por defecto, MATLAB ajusta la escala de
cada uno de los ejes de modo que varíe entre el mínimo y el máximo valor de los vectores a repre-
sentar. Este es el llamado modo "auto", o modo automático. Para definir de modo explícito los valo-
res máximo y mínimo según cada eje, se utiliza el comando:

axis([xmin, xmax, ymin, ymax])

mientras que :
axis('auto')

devuelve el escalado de los ejes al valor por defecto o automático. Otros posibles usos de este co-
mando son los siguientes:

v=axis devuelve un vector v con los valores [xmin, xmax, ymin, ymax]
axis('ij') utiliza ejes de pantalla, con el origen en la esquina superior izda.

y el eje j en dirección vertical descendente
axis('xy') utiliza ejes cartesianos normales, con el origen en la esquina in-

ferior izda. y el eje y vertical ascendente
axis('auto x') utiliza el escalado automático sólo en dirección x
axis('auto xz') utiliza el escalado automático sólo en direcciones x, z
axis(axis) mantiene los ejes en sus actuales valores, de cara a posibles nuevas gráfi-

cas añadidas con hold on
axis('tight') establece los mismos límites para los ejes que para los datos
axis('equal') el escalado es igual en ambos ejes
axis('square') la ventana será cuadrada

i
j

x

y

Capítulo 8: Gráficos bidimensionales página 113

axis('image') la ventana tendrá las proporciones de la imagen que se desea representar
en ella (por ejemplo la de una imagen bitmap que se desee importar) y el
escalado de los ejes será coherente con dicha imagen

axis('normal') elimina las restricciones introducidas por 'equal' y 'square'
axis('off') elimina las etiquetas, los números y los ejes
axis('on') restituye las etiquetas, los números y los ejes
XLim, YLim permiten modificar selectivamente los valores máximo y mínimo de los

ejes en las direcciones x e y.

Es posible también tener un control preciso sobre las marcas y los rótulos que aparecen en los ejes,
como por ejemplo en la forma siguiente:

x = -pi:.1:pi; y = sin(x);
plot(x,y)
set(gca,'XTick',-pi:pi/2:pi)
set(gca,'XTickLabel',{'-pi','-pi/2','0','pi/2','pi'})

Obsérvese cómo las propiedades se establecen sobre los ejes actuales, a los que se accede con la
función gca (get current axis).

8.1.6. FUNCIÓN LINE()

La función line() permite dibujar una o más líneas que unen los puntos cuyas coordenadas se pasan
como argumentos. Permite además especificar el color, grosor, tipo de trazo, marcador, etc. Es una
función de más bajo nivel que la función plot(), pero ofrece una mayor flexibilidad. En su versión
más básica, para dibujar un segmento de color verde entre dos puntos, esta función se llamaría de la
siguiente manera:

>> line([xini, xend]', [yini, yend]', 'color', 'g')

Se puede también dibujar dos líneas a la vez utilizando la forma:
>> line([xini1 xini2; xend1 xend2], ([yini1 yini2; yend1 yend2]);

Finalmente, si cada columna de la matriz X contiene la coordenada x inicial y final de un punto, y lo
mismo las columnas de la matriz Y con las coordenadas y, la siguiente sentencia dibuja tantas líneas
como columnas tengan las matrices X e Y:

>> line([X], [Y]);

Se pueden controlar las características de la línea por medio de pares parámetro/valor, como por
ejemplo:

>> line(x,y,'Color','r','LineWidth',4,'MarkerSize',12,'LineStyle','—','Marker','*')

8.1.7. FUNCIÓN FINDOBJ()

Si al dibujar una línea se recupera el valor de retorno de la función line y se almacena en una varia-
ble, más tarde es posible realizar un borrado selectivo de esa línea, como se ha comentado en el
apartado 8.1. Sin embargo, aunque no se haya tomado esta precacución, también es posible recupe-
rar la referencia (handle) a un determinado elemento gráfico de una figura por medio de la función
findobj (find object), a la que se pasan ciertas características del elemento gráfico que permiten su
localización.

Algunos posibles usos de esta función son los siguientes:
>> h=findobj

recupera la referencia del objeto base de la jerarquía gráfica y de todos sus descendientes;
>> findobj('color','k')

Aprenda Matlab 7.0 como si estuviera en Primero página 114

devuelve las referencias de todos los objetos de color negro;
>> set(findobj(gca,'Type','line','Color','b'), 'Color','r', 'LineWidth',3)

encuentra los objetos de tipo línea y de color azul, y cambia el color a rojo a la vez que establece
una anchura de línea de tres pixels.

8.2. Control de ventanas gráficas: Función figure
Si se llama a la función figure sin argumentos, se crea una nueva ventana gráfica con el número
consecutivo que le corresponda. El valor de retorno es dicho número.

Por otra parte, el comando figure(n) hace que la ventana n pase a ser la ventana o figura activa. Si
dicha ventana no existe, se crea una nueva ventana con el número consecutivo que le corresponda
(que se puede obtener como valor de retorno del comando). La función close cierra la figura activa,
mientras que close(n) cierra la ventana o figura número n.

El comando clf elimina el contenido de la figura activa, es decir, la deja abierta pero vacía. La fun-
ción gcf devuelve el número de la figura activa en ese momento.

Para practicar un poco con todo lo que se acaba de explicar, ejecútense las siguientes instrucciones
de MATLAB, observando con cuidado los efectos de cada una de ellas en la ventana activa. El co-
mando figure(gcf) (get current figure) permite hacer visible la ventana de gráficos desde la ventana
de comandos.

>> x=[-4*pi:pi/20:4*pi];
>> plot(x,sin(x),'r',x,cos(x),'g')
>> title('Función seno(x) -en rojo- y función coseno(x) -en verde-')
>> xlabel('ángulo en radianes'), figure(gcf)
>> ylabel('valor de la función trigonométrica'), figure(gcf)
>> axis([-12,12,-1.5,1.5]), figure(gcf)
>> axis('equal'), figure(gcf)
>> axis('normal'), figure(gcf)
>> axis('square'), figure(gcf)
>> axis('off'), figure(gcf)
>> axis('on'), figure(gcf)
>> axis('on'), grid, figure(gcf)

La función figure también admite que se fijen algunas de sus propiedades, como por ejemplo la
posición y el tamaño con que aparecerá en la pantalla. Por ejemplo, el comando:

>> figure('position',[left,botton, width,height])

abre una ventana cuya esquina inferior izquierda está en el punto (left,botton) respecto a la esquina
inferior izquierda de la pantalla (en pixels), que tiene una anchura de width pixels y una altura de
height pixels.

Otra característica muy importante de una ventana gráfica es la de representar animaciones utilizan-
do la técnica del doble buffer. De modo sencillo, esta técnica se puede explicar diciendo que es
como si el ordenador tuviera dos paneles de dibujo: mientras uno está a la vista, se está dibujando
en el otro, y cuando el dibujo está terminado este segundo panel se hace visible. El resultado del
doble buffer es que las animaciones y el movimiento se ven de modo perfecto, sin el parpadeo (flic-
ker) tan característico cuando no se utiliza esta técnica.

Para dibujar con doble buffer en la ventana activa basta ejecutar los comandos siguientes (sin dema-
siadas explicaciones, que se pueden buscar en el Help de MATLAB):

>> set(gcf,'DoubleBuffer','on', 'Renderer','painters')

Capítulo 8: Gráficos bidimensionales página 115

8.3. Otras funciones gráficas 2-D
Existen otras funciones gráficas bidimensionales orientadas a generar otro tipo de gráficos distintos
de los que produce la función plot() y sus análogas. Algunas de estas funciones son las siguientes
(para más información sobre cada una de ellas en particular, utilizar help nombre_función):

bar() crea diagramas de barras
barh() diagramas de barras horizontales
bar3() diagramas de barras con aspecto 3-D
bar3h() diagramas de barras horizontales con aspecto 3-D
pie() gráficos con forma de “tarta”
pie3() gráficos con forma de “tarta” y aspecto 3-D
area() similar plot(), pero rellenando en ordenadas de 0 a y
stairs() función análoga a bar() sin líneas internas
errorbar() representa sobre una gráfica –mediante barras– valores de errores
compass() dibuja los elementos de un vector complejo como un conjunto de vectores par-

tiendo de un origen común
feather() dibuja los elementos de un vector complejo como un conjunto de vectores par-

tiendo de orígenes uniformemente espaciados sobre el eje de abscisas
hist() dibuja histogramas de un vector
rose() histograma de ángulos (en radianes)
quiver() dibujo de campos vectoriales como conjunto de vectores

Por ejemplo, genérese un vector de valores aleatorios entre 0 y 10, y ejecútense los comandos:
>> x=[rand(1,100)*10];
>> plot(x)
>> bar(x)
>> stairs(x)
>> hist(x)
>> hist(x,20)
>> alfa=(rand(1,20)-0.5)*2*pi;
>> rose(alfa)

8.3.1. FUNCIÓN FPLOT

La función plot vista anteriormente dibuja vectores. Si se quiere dibujar una función, antes de ser
pasada a plot debe ser convertida en un vector de valores. Esto tiene algunos inconvenientes, por
ejemplo, el que "a priori" es difícil predecir en que zonas la función varía más rápidamente y habría
por ello que reducir el espaciado entre los valores en el eje de abscisas.

La función fplot admite como argumento un nombre de función o un nombre de fichero *.m en el
cual esté definida una función de usuario. La función puede ser escalar (un único resultado por cada
valor de x) o vectorial. La forma general de esta función es la siguiente:

fplot('funcion', limites, 'cadena', tol)

donde:

'funcion' representa el nombre de la función o del fichero *.m entre apóstrofos (pasado como
cadena de caracteres),

limites es un vector de 2 ó 4 elementos, cuyos valores son [xmin,xmax] o
[xmin,xmax,ymin,ymax],

'cadena' tiene el mismo significado que en plot y permite controlar el color, los markers y el
tipo de línea.

Aprenda Matlab 7.0 como si estuviera en Primero página 116

tol es la tolerancia de error relativo. El valor por defecto es 2e-03. El máximo número
de valores en x es (1/tol)+1

Esta función puede utilizarse también en la forma:
[x,y]=fplot('funcion', limites, 'cadena', tol)

y en este caso se devuelven los vectores x e y, pero no se dibuja nada. El gráfico puede obtenerse
con un comando posterior por medio de la función plot. Véase un ejemplo de utilización de esta
función. Se comienza creando un fichero llamado mifunc.m en el directorio G:\matlab que conten-
ga las líneas siguientes:

function y = mifunc(x)
y(:,1)=200*sin(x)./x;
y(:,2)=x.^2;

y a continuación se ejecuta el comando:
>> fplot('mifunc(x)', [-20 20], 'g')

Obsérvese que la función mifunc devuelve una matriz con dos columnas, que constituyen las dos
gráficas dibujadas. En este caso se ha utilizado para ellas el color verde.

8.3.2. FUNCIÓN FILL PARA POLÍGONOS

Ésta es una función especial para dibujar polígonos planos, rellenándolos de un determinado color.
La forma general es la siguiente:

>> fill(x,y,c)

que dibuja un polígono definido por los vectores x e y, rellenándolo con el color especificado por c.
Si es necesario, el polígono se cierra uniendo el último vértice con el primero. Respecto al color:

– Si c es un carácter de color ('r','g','b','c','m','y','w','k'), o un vector de valores [r g b], el polígono
se rellena de modo uniforme con el color especificado.

– Si c es un vector de la misma dimensión que x e y, sus elementos se trasforman de acuerdo
con un mapa de colores determinado, y el llenado del polígono –no uniforme en este caso– se
obtiene interpolando entre los colores de los vértices. Sobre este tema de los colores, se volve-
rá más adelante con un cierto detenimiento.

Este comando puede utilizarse también con matrices:
>> fill(A,B,C)

donde A y B son matrices del mismo tamaño. En este caso se dibuja un polígono por cada par de
columnas de dichas matrices. C puede ser un vector fila de colores uniformes para cada polígono, o
una matriz del mismo tamaño que las anteriores para obtener colores de relleno por interpolación. Si
una de las dos, o A o B, son un vector en vez de una matriz, se supone que ese vector se repite tan-
tas veces como sea necesario para dibujar tantos polígonos como columnas tiene la matriz. Considé-
rese un ejemplo sencillo de esta función:

>> x=[1 5 4 2]; y=[1 0 4 3];
>> fill(x,y,'r')
>> colormap(gray), fill(x,y,[1 0.5 0.8 0.7])

8.3.3. DIBUJO SIMPLIFICADO DE FUNCIONES: FUNCIONES EZPLOT() Y EZPOLAR()

La función ezplot es una función de dibujo simplificada, útil cuando se quiere obtener de forma
muy rápida la gráfica de una función. En su forma más simple, se puede llamar en la forma:

Capítulo 8: Gráficos bidimensionales página 117

>> ezplot(f);

donde f es el nombre o mejor el handle de una función. También puede ser una función inline. Por
defecto la función se dibuja en el intervalo [–2π ≤ x ≤ 2π]. Si se desea dibijar f en un intervalo dife-
rente, se puede escribir:

>> ezplot(f,[a,b]);

La función f puede ser una función implícita de dos variables f(x,y)=0. El intervalo por defecto
para cada variable es [–2π ≤ x ≤ 2π]. También se puede definir un intervalo común o específico
para cada variable.

>> ezplot(f); % dibuja f(x,y)=0 en -2*pi<x<2*pi y -2*pi<y<2*pi
>> ezplot(f, [a,b]); % dibuja f(x,y)=0 en a<x<b y a<y> ezplot(f, [xmin,xmax,ymin,ymax]);

La función ezplot puede dibujar también funciones paramétricas x(t), y(t), como por ejemplo:
>> ezplot('sin(t)','cos(t)'); % dibuja para 0<t<2*pi
>> ezplot('sin(t)','cos(t)', [t1,t2]); % dibuja para t1<t<t2
>> f = inline('cos(x)+2*sin(2*x)'); ezplot(f);

La función ezpolar es similar a ezplot y se utiliza para dibujar en coordenadas polares.

8.4. Entrada de puntos con el ratón
Se realiza mediante la función ginput, que permite introducir las coordenadas del punto sobre el que
está el cursor, al clicar (o al pulsar una tecla). Algunas formas de utilizar esta función son las si-
guientes:

[x,y] = ginput lee un número indefinido de puntos –cada vez que se clica o se pulsa una
tecla cualquiera– hasta que se termina pulsando la tecla intro

[x,y] = ginput(n) lee las coordenadas de n puntos
[x,y,bot] = ginput igual que el anterior, pero devuelve también un vector de enteros bot con

el código ASCII de la tecla pulsada o el número del botón del ratón (1, 2,
...) con el que se ha clicado

Como ejemplo de utilización de este comando, ejecútense las instrucciones siguientes en la ventana
de comandos de MATLAB para introducir un cuadrilátero arbitrario y dibujarlo de dos formas:

>> clf, [x,y]=ginput(4);
>> figure(gcf), plot(x,y,'w'), pause(5), fill(x,y,'r')

donde se ha introducido el comando pause(5) que espera 5 segundos antes de continuar la ejecu-
ción. Este comando admite como argumento un tiempo con precisión de centésimas de segundo.

8.5. Preparación de películas o "movies"
Para preparar pequeñas películas o movies se pueden utilizar las funciones movie, moviein y get-
frame. Una película se compone de varias imágenes, denominadas frames. La función getframe
devuelve un vector columna con la información necesaria para reproducir la imagen que se acaba de
representar en la figura o ventana gráfica activa, por ejemplo con la función plot. El tamaño de este
vector columna depende del tamaño de la ventana, pero no de la complejidad del dibujo. La función
moviein(n) reserva memoria para almacenar n frames. La siguiente lista de comandos crearía una
película de 17 imágenes o frames, que se almacenarán como las columnas de la matriz M:

Aprenda Matlab 7.0 como si estuviera en Primero página 118

M = moviein(17);
x=[-2*pi:0.1:2*pi]';
for j=1:17
 y=sin(x+j*pi/8);
 plot(x,y);
 M(:,j) = getframe;
end

Una vez creada la película se puede representar el número de veces que se desee con el comando
movie. Por ejemplo, para representar 10 veces la película anterior, a 15 imágenes por segundo,
habría que ejecutar el comando siguiente (los dos últimos parámetros son opcionales):

movie(M,10,15)

Los comandos moviein, getframe y movie tienen posibilidades adicionales para las que puede con-
sultarse el Help correspondiente. Hay que señalar que en MATLAB no es lo mismo un movie que
una animación. Una animación es simplemente una ventana gráfica que va cambiando como con-
secuencia de los comandos que se van ejecutando.
Un movie es una animación grabada o almacenada
en memoria previamente.

8.6. Impresión de las figuras en impresora láser
Es muy fácil enviar a la impresora o a un fichero
una figura producida con MATLAB. La ¡Error! No
se encuentra el origen de la referencia. muestra
las opciones que ofrece el menú File relacionadas
con la impresión de figuras: es posible establecer los
parámetros de la página (Page Setup), de la impre-
sora (Print Setup), obtener una visión preliminar
(Print Preview) e imprimir (Print). Todos estos co-
mandos se utilizan en la forma habitual de las apli-
caciones de Windows.

La opción Page Setup abre el cuadro de diálogo de
la Figura 40, que permite situar el dibujo sobre la
página, establecer los márgenes, la orientación del
papel, etc.

La impresión de una figura puede hacerse también
desde la línea de comandos. La forma general del
comando de impresión es la siguiente (si se omite el
nombre del fichero, la figura se envía a la impreso-
ra):

>> print –device –options filename

Mediante el Help se puede obtener más información
sobre el comando print.
Es posible también exportar a un fichero una figura
de MATLAB, por ejemplo para incluirla luego en
un documento de Word o en una presentación de
Powerpoint. Para ello se utiliza el comando File/Save as de la ventana en la que aparece la figura.
El cuadro de diálogo que se abre ofrece distintos formatos gráficos para guardar la imagen. Cabe
destacar la ausencia del formato *.gif, muy utilizado en Internet; sí está presente sin embargo el

Figura 39. Comandos para imprimir figuras.

Figura 40. Preparar la impresión con Page Setup.

Capítulo 8: Gráficos bidimensionales página 119

formato *.png, que se considera el sucesor natural del *.gif. En todo caso la figura puede exportarse
con cualquier formato estándar y luego utilizar por ejemplo Paint Shop Pro para transformarla.

8.7. Las ventanas gráficas de MATLAB
Anteriormente han aparecido en varias ocasiones las
ventanas gráficas de MATLAB. Quizás sea el mo-
mento de hacer una breve recapitulación sobre sus
posibilidades, que se han ido mejorando en las suce-
sivas versiones. La Figura 41 muestra los menús y las
barras de herramientas de las ventanas gráficas de
MATLAB. Por defecto sólo aparece la barra de
herramientas de la línea superior. Para hacer aparecer
también la segunda barra se ejecuta Camera Toolbar,
en el menú View.

En el menú Edit, además de los comandos referentes
a la copia de figuras, aparecen los comandos Figure
Properties, Axes Properties, Current Object Proper-
ties y Colormap, que abren paso a los correspondien-
tes editores de propiedades. Los tres primeros se
muestran en las figuras siguientes (con la parte de la imagen con tamaño reducido).

Figura 42. Editor de propiedades de

Figure.
Figura 43. Editor de propiedades de

Axes.
Figura 44. Editor de propiedades de

objeto (una línea).

También es posible cambiar interactivamente
el mapa de colores utilizado en una figura
(ver apartado 9.2.1). Con el comando
Edit/Colormap se abre el cuadro de diálogo
mostrado en la Figura 45.

El menú Edit de las ventanas gráficas ofrece
también las opciones estándar de Windows,
permitiendo copiar, cortar y pegar los elemen-
tos seleccionados de la figura si está activada
la opción Plot Edit ().

El menú View permite hacer visibles u ocultar
las barras de herramientas Window Toolbar y
Camera Toolbar. Como se ha dicho, por de-

Figura 41. Menús y barras de las ventanas gráficas.

Figura 45. Editor de mapa de colores.

Aprenda Matlab 7.0 como si estuviera en Primero página 120

fecto sólo aparece la primera de ellas. Estas barras de herramientas disponen de numerosas opciones
para trabajar con ventanas que contengan gráficos 2-D y 3-D. La mejor forma de aprender es probar
y acudir al Help cuando hay algo que no se entiende.

En menú Insert permite añadir elementos a la figura activa, por ejemplo rótulos, etiquetas, líneas,
texto, etc. Por su parte, el menú Tools permite realizar desde menú algunas de las operaciones tam-
bién disponibles en las barras de herramientas. Finalmente, el menú Help permite acceder a la ayu-
da concreta que hace referencia a las ventanas gráficas.

Capítulo 9: Gráficos tridimensionales página 121

9. GRÁFICOS TRIDIMENSIONALES
Quizás sea ésta una de las características de MATLAB que más admiración despierta entre los
usuarios no técnicos (cualquier alumno de ingeniería sabe que hay ciertas operaciones algebraicas –
como la descomposición de valores singulares, sin ir más lejos– que tienen dificultades muy supe-
riores, aunque "luzcan" menos).

9.1. Tipos de funciones gráficas tridimensionales
MATLAB tiene posibilidades de realizar varios tipos de gráficos 3D. Para darse una idea de ello, lo
mejor es verlo en la pantalla cuanto antes, aunque haya que dejar las explicaciones detalladas para
un poco más adelante.

La primera forma de gráfico 3D es la función plot3, que es el análogo tridimensional de la función
plot. Esta función dibuja puntos cuyas coordenadas están contenidas en 3 vectores, bien uniéndolos
mediante una línea continua (defecto), bien mediante markers. Asegúrese de que no hay ninguna
ventana gráfica abierta y ejecute el siguiente comando que dibuja una línea espiral en color rojo:

>> fi=[0:pi/20:6*pi]; plot3(cos(fi),sin(fi),fi,'r'), grid

Ahora se verá cómo se representa una función de dos variables. Para ello se va a definir una función
de este tipo en un fichero llamado test3d.m. La fórmula será la siguiente:

 ()z x e
x

x y e ex y x y x y= − − − −
⎛
⎝⎜

⎞
⎠⎟ −− − + − − − + −3 1 10

5
1
3

2 1 3 5 12 2 2 2 2 2() ()

El fichero test3d.m debe contener las líneas siguientes:
function z=test3d(x,y)
z = 3*(1-x).^2.*exp(-(x.^2) - (y+1).^2) ...
 - 10*(x/5 - x.^3 - y.^5).*exp(-x.^2-y.^2) ...
 - 1/3*exp(-(x+1).^2 - y.^2);

Ahora, ejecútese la siguiente lista de comandos
(directamente, o mejor creando un fichero lla-
mado test3dMain.m que los contenga):

>> x=[-3:0.4:3]; y=x;
>> close
>> subplot(2,2,1)
>> figure(gcf),fi=[0:pi/20:6*pi];
>> plot3(cos(fi),sin(fi),fi,'r')
>> grid
>> [X,Y]=meshgrid(x,y);
>> Z=test3d(X,Y);
>> subplot(2,2,2)
>> figure(gcf), mesh(Z)
>> subplot(2,2,3)
>> figure(gcf), surf(Z)
>> subplot(2,2,4)
>> figure(gcf), contour3(Z,16)

En la figura resultante (Figura 46) aparece una
buena muestra de algunas de las posibilidades
gráficas tridimensionales de MATLAB. En las próximas secciones se realizará una explicación más
detallada de qué se ha hecho y cómo se ha hecho.

Figura 46. Gráficos 3D realizados con MATLAB.

Aprenda Matlab 7.0 como si estuviera en Primero página 122

9.1.1. DIBUJO SIMPLIFICADO DE FUNCIONES 3-D: FUNCIONES EZPLOT3(), EZSURF(), ETC.

Existen también algunas funciones simplificadas para el dibujo 3-D similares a la función ezplot
vista en el Apartado 8.3.3, en la página 116.

Así la función ezplot3 dibuja lineas paramétricas tridimensionales en la forma x(t), y(t) y z(t). Por
defecto se utiliza el intervalo 0 < t < 2*pi. Considérense las siguientes posibilidades:

>> ezplot3(x,y,z);
>> ezplot3(x,y,z,[t1,t2]);
>> ezplot3(x,y,z,[t1,t2],'animate'); % dibuja la curva progresivamente

En las sentencias anteriores x, y, y z pueden ser funciones anónimas, handles a funciones, funciones
inline o expresiones definidas como cadena de caracteres. Los ficheros *.m y las funciones inline
deben escribirse de tal forma que admitan vectores de valores como argumentos (vectorizados).

Otra función de dibujo 3-D rápido es ezsurf. Esta función utiliza la funcción surf para realizar un
dibujo 3-D de una función f(x,y). Por defecto se utilizan los intervalos –2*pi < x, y < 2*pi. La fun-
ción f se puede definir por medio de una expresión en la que aparezcan x e y definida por medio de
una cadena de caracteres, con una función convencional, o con funciones anónimas u online. A con-
tinuación se dan algunas posibles formas de exta función:

>> ezsurf(f);
>> ezsurf(f, [a,b]);
>> ezsurf(f, [xmin,xmax,ymin,ymax]);

La función ezsurf permite también dibujar superficies paramétricas 3-D, por ejmplo en las formas
siguientes, con parámetros s y t:

>> ezsurf(x,y,z); % por defecto -2*pi < s,t < 2*pi
>> ezsurf(x,y,z, [a,b]);
>> ezsurf(x,y,z, [smin,smax,tmin,tmax]);

Con un último parámetro entero N se puede controlar la densidad del mallado con el que se dibuja.
Por defecto N=60. Con el argumento 'circ' se dibuja en un dominio circular. A continuación se in-
cluyen algunos ejemplos tomados de la ayuda de MATLAB:

>> ezsurf('s*cos(t)','s*sin(t)','t')
>> ezsurf('s*cos(t)','s*sin(t)','s')
>> ezsurf('exp(-s)*cos(t)','exp(-s)*sin(t)','t',[0,8,0,4*pi])

Otras funciones simplificadas para dibujo 3-D son ezcontour, ezcontourf, ezmesh, ezsurfc y ez-
meshc. Para más información consultar el Help de MATLAB.

9.1.2. DIBUJO DE LÍNEAS: FUNCIÓN PLOT3

La función plot3 es análoga a su homóloga bidimensional plot. Su forma más sencilla es:
>> plot3(x,y,z)

que dibuja una línea que une los puntos (x(1), y(1), z(1)), (x(2), y(2), z(2)), etc. y la proyecta sobre
un plano para poderla representar en la pantalla. Al igual que en el caso plano, se puede incluir una
cadena de 1, 2 ó 3 caracteres para determinar el color, los markers, y el tipo de línea:

>> plot3(x,y,z,s)

También se pueden utilizar tres matrices X, Y y Z del mismo tamaño:
>> plot3(X,Y,Z)

en cuyo caso se dibujan tantas líneas como columnas tienen estas 3 matrices, cada una de las cuales
está definida por las 3 columnas homólogas de dichas matrices.

Capítulo 9: Gráficos tridimensionales página 123

A continuación se va a realizar un ejemplo sencillo consistente en dibujar un cubo. Para ello se
creará un fichero llamado cubo.m que contenga las aristas correspondientes, definidas mediante los
vértices del cubo como una línea poligonal continua (obsérvese que algunas aristas se dibujan dos
veces). El fichero cubo.m define una matriz A cuyas columnas son las coordenadas de los vértices,
y cuyas filas son las coordenadas x, y y z de los mismos. A continuación incluye la llamada a la
función plot3:

% fichero cubo.m
close all
A=[0 1 1 0 0 0 1 0 1 1 0 0 1 1 1 1 0 0
 0 0 1 1 0 0 0 0 0 1 1 0 0 0 1 1 1 1
 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 1 1 0];
plot3(A(1,:)',A(2,:)',A(3,:)')

9.1.3. DIBUJO DE MALLADOS: FUNCIONES MESHGRID, MESH Y SURF

Ahora se verá con detalle cómo se puede dibujar una función de dos variables (z=f(x,y)) sobre un
dominio rectangular. Se verá que también se pueden dibujar los elementos de una matriz como fun-
ción de los dos índices.

Sean x e y dos vectores que contienen las coordenadas en una y otra dirección de la retícula (grid)
sobre la que se va a dibujar la función. Después hay que crear dos matrices X (cuyas filas son co-
pias de x) e Y (cuyas columnas son copias de y). Estas matrices se crean con la función meshgrid.
Estas matrices representan respectivamente las coordenadas x e y de todos los puntos de la retícula.
La matriz de valores Z se calcula a partir de las matrices de coordenadas X e Y. Finalmente hay que
dibujar esta matriz Z con la función mesh, cuyos elementos son función elemento a elemento de los
elementos de X e Y. Véase como ejemplo el dibujo de la función sen(r)/r (siendo r=sqrt(x2+y2);
para evitar dividir por 0 se suma al denominador el número pequeño eps). Para distinguirla de la
función test3d anterior se utilizará u y v en lugar de x e y. Créese un fichero llamado sombrero.m
que contenga las siguientes líneas:

close all
u=-8:0.5:8; v=u;
[U,V]=meshgrid(u,v);
R=sqrt(U.^2+V.^2)+eps;
W=sin(R)./R;
mesh(W)

Ejecutando este fichero se obtiene el gráfico mostrado en la Figura 47.

Se habrá podido comprobar que la función mesh dibuja en perspectiva una función en base a una
retícula de líneas de colores, rodeando cuadriláteros del color de fondo, con eliminación de líneas
ocultas. Más adelante se verá cómo controlar estos colores que aparecen. Baste decir por ahora que
el color depende del valor z de la función. Ejecútese ahora el comando:

>> surf(W)

y obsérvese la diferencia en la Figura 48. En vez de líneas aparece ahora una superficie faceteada,
también con eliminación de líneas ocultas. El color de las facetas depende también del valor de la
función.

Aprenda Matlab 7.0 como si estuviera en Primero página 124

Figura 47. Figura 3D de la función “sombrero”.

Figura 48. Función “sombrero” con facetas.

Como un segundo ejemplo, se va a volver a dibujar la función picos (la correspondiente al fichero
test3d.m visto previamente). Créese ahora el fichero picos.m con las siguientes sentencias:

x=[-3:0.2:3];
y=x;
[X,Y]=meshgrid(x,y);
Z=test3d(X,Y);
figure(gcf), mesh(Z), pause(5), surf(Z)

Es necesario poner la instrucción pause –que espera 5 segundos– para que se puedan ver las dos
formas de representar la función Z (si no, sólo se vería la segunda). Una vez creado este fichero,
tecléese picos en la línea de comandos y obsérvese el resultado. Más adelante se verá también cómo
controlar el punto de vista en estos gráficos en perspectiva.

9.1.4. DIBUJO DE LÍNEAS DE CONTORNO: FUNCIONES CONTOUR Y CONTOUR3

Una forma distinta de representar funciones tridimensionales es por medio de isolíneas o curvas de
nivel. A continuación se verá cómo se puede utilizar estas representaciones con las matrices de da-
tos Z y W que se han calculado previamente:

>> contour(Z,20)
>> contour3(Z,20)
>> contour(W,20)
>> contour3(W,20)

donde "20" representa el número de líneas de nivel. Si no se pone se utiliza un número por defecto.
Otras posibles formas de estas funciones son las siguientes:

contour(Z, val) siendo val un vector de valores para las isolíneas a dibujar
contour(u,v,W,20) se utilizan u y v para dar valores a los ejes de coordenadas
contour(Z,20,'r--') se puede especificar el tipo de línea como en la función plot
contourf(Z, val) análoga a contour(), pero rellenando el espacio entre líneas

9.2. Utilización del color en gráficos 3-D
En los dibujos realizados hasta ahora, se ha visto que el resultado adoptaba determinados colores,
pero todavía no se ha explicado de dónde han salido. Ahora se verá qué sistema utiliza MATLAB
para determinar los colores.

Capítulo 9: Gráficos tridimensionales página 125

9.2.1. MAPAS DE COLORES

Un mapa de colores se define como una matriz de tres columnas, cada una de las cuales contiene un
valor entre 0 y 1, que representa la intensidad de uno de los colores fundamentales: R (red o rojo),
G (green o verde) y B (blue o azul).

La longitud por defecto de los mapas de colores de MATLAB es 64, es decir, cada mapa de color
contiene 64 colores. Esta longitud puede modificarse como luego se verá.

Algunos mapas de colores están predefinidos en MATLAB. Buscando colormap en Help se obtiene
–entre otra información– la lista de los siguientes mapas de colores:

autumn varies smoothly from red, through orange, to yellow.
bone is a grayscale colormap with a higher value for the blue component.
colorcube contains as many regularly spaced colors in RGB colorspace as possible, while attempting to pro-

vide more steps of gray, pure red, pure green, and pure blue.
cool consists of colors that are shades of cyan and magenta.
copper varies smoothly from black to bright copper.
flag consists of the colors red, white, blue, and black.
gray returns a linear grayscale colormap.
hot varies smoothly from black, through shades of red, orange, and yellow, to white.
hsv varies the hue component of the hue-saturation-value color model. The colors begin with red, pass

through yellow, green, cyan, blue, magenta, and return to red.
jet ranges from blue to red, and passes through the colors cyan, yellow, and orange. It is a variation of

the hsv colormap.
lines colormap of colors specified by the Axes ColorOrder property and a shade of gray.
pink contains pastel shades of pink.
prism repeats the six colors red, orange, yellow, green, blue, and violet.
spring consists of colors that are shades of magenta and yellow.
summer consists of colors that are shades of green and yellow.
white is an all white monochrome colormap.
winter consists of colors that are shades of blue and green.

El colormap por defecto es jet. Para visualizar estos mapas de colores, cambiando al mismo tiempo
su longitud, se pueden utilizar los siguientes comandos en la Command Window:

>> colormap(hot(128))
>> pcolor([1:129;1:129]')

donde la función pcolor permite visualizar por medio de colores la magnitud de los elementos de
una matriz (en realidad representa colores de “celdas”, para lo que necesita que la matriz tenga una
fila y columna más de las necesarias; ésa es la razón de que en el ejemplo anterior a la función pco-
lor se le pasen 129 filas y 2 columnas).

Si se desea imprimir una figura en una impresora láser en blanco y negro, puede utilizarse el mapa
de color gray. En el siguiente apartado se explica con más detalle el dibujo en "pseudocolor" (pco-
lor, abreviadamente).

El comando colormap actúa sobre la figura activa, cambiando sus colores. Si no hay ninguna figura
activa, sustituye al mapa de color anterior para las siguientes figuras que se vayan a dibujar.

9.2.2. IMÁGENES Y GRÁFICOS EN PSEUDOCOLOR. FUNCIÓN CAXIS

Cuando se desea dibujar una figura con un determinado mapa de colores se establece una corres-
pondencia (o un mapping) entre los valores de la función y los colores del mapa de colores. Esto
hace que los valores pequeños se dibujen con los colores bajos del mapa, mientras que los valores
grandes se dibujan con los colores altos.

La función pcolor es -en cierta forma- equivalente a la función surf con el punto de vista situado
perpendicularmente al dibujo. Un ejemplo interesante de uso de la función pcolor es el siguiente: se

Aprenda Matlab 7.0 como si estuviera en Primero página 126

genera una matriz A de tamaño 100×100 con valores aleatorios entre 0 y 1. La función pcolor(A)
dibuja en color los elementos de la matriz A, mientras que la función pcolor(inv(A)) dibuja los co-
lores correspondientes a los elementos de la matriz inversa. Se puede observar que los colores de la
matriz inversa son mucho más uniformes que los de la matriz original. Los comandos son los si-
guientes:

>> A=rand(100,100); colormap(hot); pcolor(A); pause(5), pcolor(inv(A));

donde el comando pause(5) simplemente introduce un pausa de 5 seg en la ejecución. Al ejecutar
todos los comandos en la misma línea es necesario poner pause pues si no dibuja directamente la
inversa sin pasar por la matriz inicial.

Si todavía se conservan las matrices Z y W que se han definido previamente, se pueden hacer algu-
nas pruebas cambiando el mapa de colores.

La función caxis permite ajustar manualmente la escala de colores. Su forma general es:
caxis([cmin, cmax])

donde cmin y cmax son los valores numéricos a los que se desea ajustar el mínimo y el máximo
valor de la escala de colores.

9.2.3. DIBUJO DE SUPERFICIES FACETEADAS

La función surf tiene diversas posibilidades referentes a la forma en que son representadas las face-
tas o polígonos coloreados. Las tres posibilidades son las siguientes:

shading flat determina sombreado con color constante para cada polígono. Este som-
breado se llama plano o flat.

shading interp establece que el sombreado se calculará por interpolación de colores entre
los vértices de cada faceta. Se llama también sombreado de Gouraud

shading faceted consiste en sombreado constante con líneas negras superpuestas. Esta es la
opción por defecto

Edite el fichero picos.m de forma que aparezcan menos facetas y más grandes. Se puede probar con
ese fichero, eliminando la función mesh, los distintos tipos de sombreado o shading que se acaban
de citar. Para obtener el efecto deseado, basta poner la sentencia shading a continuación de la sen-
tencia surf.

9.2.4. OTRAS FORMAS DE LAS FUNCIONES MESH Y SURF

Por defecto, las funciones mesh y surf atribuyen color a los bordes y facetas en función de los valo-
res de la función, es decir en función de los valores de la matriz Z. Ésta no es sin embargo la única
posibilidad. En las siguientes funciones, las dos matrices argumento Z y C tienen el mismo tamaño:

mesh(Z,C)
surf(Z,C)

En las figuras resultantes, mientras se dibujan los valores de Z, los colores se obtienen de C. Un
caso típico es aquél en el que se quiere que los colores dependan de la curvatura de la superficie (y
no de su valor). MATLAB dispone de la función del2, que aproxima la curvatura por diferencias
finitas con el promedio de los 4 elementos contiguos, resultando así una matriz proporcional a la
curvatura. Obsérvese el efecto de esta forma de la función surf en el siguiente ejemplo (si todavía se
tiene la matriz Z formada a partir de test3d, utilícese. Si no se conserva, vuélvase a calcular):

>> C=del2(Z);
>> close, surf(Z,C)

Capítulo 9: Gráficos tridimensionales página 127

9.2.5. FORMAS PARAMÉTRICAS DE LAS FUNCIONES MESH, SURF Y PCOLOR

Existen unas formas más generales de las funciones mesh, surf y pcolor. Son las siguientes (se pre-
sentan principalmente con la funciones mesh y surf). La función:

mesh(x,y,Z,C)

dibuja una superficie cuyos puntos tienen como coordenadas (x(j), y(i), Z(i,j)) y como color C(i,j).
Obsérvese que x varía con el índice de columnas e y con el de filas. Análogamente, la función:

mesh(X,Y,Z,C)

dibuja una superficie cuyos puntos tienen como coordenadas (X(i,j), Y(i,j), Z(i,j)) y como color
C(i,j). Las cuatro matrices deben ser del mismo tamaño. Si todavía están disponibles las matrices
calculadas con el fichero picos.m, ejecútese el siguiente comando y obsérvese que se obtiene el
mismo resultado que anteriormente:

>> close, surf(X,Y,Z), pause(5), mesh(X,Y,Z)

¿Cuál es la ventaja de estas nuevas formas de las funciones ya conocidas? La principal es que admi-
ten más variedad en la forma de representar la cuadrícula en el plano (x-y). La primera forma admi-
te vectores x e y con puntos desigualmente espaciados, y la segunda admite conjuntos de puntos
muy generales, incluso los provenientes de coordenadas cilíndricas y esféricas.

9.2.6. OTRAS FUNCIONES GRÁFICAS 3D

Las siguientes funciones se derivan directamente de las anteriores, pero añaden algún pequeño deta-
lle y/o funcionalidad:

surfc combinación de surf, y contour en z=0
trisurf similar a surf, dibuja una superficie 3-D a partir de los valores de una función en

una malla de triángulos.
meshz mesh con plano de referencia en el valor mínimo y una especie de “cortina” en los

bordes del dominio de la función
trimesh similar a mesh, dibuja una superficie 3-D a partir de los valores de una función en

una malla de triángulos.
surfl para controlar la iluminación determinando la posición e intensidad de un foco de

luz.
light crea un foco de luz en los ejes actuales capaz de actuar sobre superficies 3-D. Se

le deben pasar como argumentos el color, el estilo (luz local o en el infinito) y la
posición. Son muy importantes las propiedades de los objetos iluminados patch y
surface; consultarlas por medio del Help cuando se vayan a utilizar.

colorbar añade el mapa de colores activo a la figura, redimensionando los ejes para hacerle
un lugar. Se puede colocar horizontal o verticalmente.

sphere dibuja una esfera 3-D de radio unidad. Por defecto se utiliza un faceteado de 20
(20 meridianos y 20 paralelos). Este número se puede cambiar. Es posible recoger
las coordenadas como valor de retorno y multiplicarlas por un factor de escala.

cylinder dibuja una superficie cilíndrica de radio 1 y altura 1, con 20 facetas laterales. Este
número se puede cambiar, como segundo argumento. El primer argumento puede
ser un vector que indica como varía el radio en función de la altura del cilindro.
También es posible recoger las coordenadas como valor de retorno y multiplicar-
las por un factor de escala.

Se pueden probar estas funciones con los datos de que se dispone. Utilícese el help para ello.

Aprenda Matlab 7.0 como si estuviera en Primero página 128

9.2.7. ELEMENTOS GENERALES: EJES, PUNTOS DE VISTA, LÍNEAS OCULTAS, ...

Las funciones surf y mesh dibujan funciones tridimensionales en perspectiva. La localización del
punto de vista o dirección de observación se puede hacer mediante la función view, que tiene la si-
guiente forma:

view(azimut, elev)

donde azimut es el ángulo de rotación de un plano horizontal, medido sobre el eje z a partir del eje
x en sentido antihorario, y elev es el ángulo de elevación respecto al plano (x-y). Ambos ángulos se
miden en grados, y pueden tomar valores positivos y negativos (sus valores por defecto son -37.5 y
30). También se puede definir la dirección del punto de vista mediante las tres coordenadas carte-
sianas de un vector (sólo se tiene en cuenta la dirección):

view([xd,yd,zd])

En los gráficos tridimensionales existen funciones para controlar los ejes, por ejemplo:
axis([xmin,xmax,ymin,ymax,zmin,zmax])

axis([xmin xmax ymin ymax zmin zmax cmin cmax])

Esta última función es una forma combinada de la función axis y de la función caxis, explicada en
el apartado 9.2.2.

También se pueden utilizar las funciones siguientes: xlabel, ylabel, zlabel, xlim, ylim, zlim,
axis('auto'), axis(axis), etc.

Las funciones mesh y surf disponen de un algoritmo de eliminación de líneas ocultas (los polígo-
nos o facetas, no dejan ver las líneas que están detrás). El comando hidden activa y desactiva la
eliminación de líneas ocultas.

En el dibujo de funciones tridimensionales, a veces también son útiles los NaNs. Cuando una parte
de los elementos de la matriz de valores Z son NaNs, esa parte de la superficie no se dibuja, permi-
tiendo ver el resto de la superficie.

