Aprenda Matlab 7.0

como s/ estuviera en primero

Madrid
Diciembre 2005

Javier Garcia de Jalén, José Ignacio Rodriguez, Jesus Vidal

Escuela Técnica Superior
de Ingenieros Industriales

Universidad Politécnica de Madrid

Aprenda Matiab 7.0 como
si estuviera en primero

Javier Garcia de Jalon
José Ignacio Rodriguez
Jesus Vidal

Indice pagina i

iNDICE
PROLOGO
2. INTRODUCCION

1
2
2.1. Acerca de este manual 2
2.2. Novedades en este manual 2
2.3. El programa MATLAB 3
2.4. Uso del Help 7
2.5. El entorno de trabajo de MATLAB 9

2.5.1. El Escritorio de Matlab (Matlab Desktop) 9
2.5.2. Command Window 11
2.5.3. Command History Browser 11
2.5.4. Current Directory Browser 12
2.5.5. Path de MATLAB: establecer el camino de busqueda (search path) 12
2.5.6. Workspace Browser y Array Editor 14
2.5.7. El Editor/Debugger 16
2.5.8. El profiler 18

2.6. Preferencias: Formatos de salida y de otras opciones de MATLAB 18
2.7. Ficheros matlabrc.m, startup.m y finish.m 19
2.8. Guardar variables y estados de una sesion: Comandos save y load 20
2.9. Guardar sesion y copiar salidas: Comando diary 21
2.10. Lineas de comentarios 21
2.11. Medida de tiempos y de esfuerzo de calculo 21
3. OPERACIONES CON MATRICES Y VECTORES 23
3.1. Definicion de matrices desde teclado 23
3.2. Operaciones con matrices 25
3.2.1. Operadores aritméticos 25
3.2.2. Operadores para la resolucién de sistemas de ecuaciones lineales 26
3.2.3. Operadores elemento a elemento 27

3.3. Tipos de datos 28
3.3.1. Numeros reales de doble precision 28
3.3.2. Otros tipos de variables: integer, float y logical 29
3.3.3. Numeros complejos: Funcion complex 30
3.3.4. Cadenas de caracteres 31

3.4. Variables y expresiones matriciales 31
3.5. Otras formas de definir matrices 32
3.5.1. Tipos de matrices predefinidos 32
3.5.2. Formacién de una matriz a partir de otras 33
3.5.3. Direccionamiento de vectores y matrices a partir de vectores 34
3.5.4. Operador dos puntos (:) 35
3.5.5. Matriz vacia A[]. Borrado de filas o columnas 37
3.5.6. Definicion de vectores y matrices a partir de un fichero 38
3.5.7. Definicion de vectores y matrices mediante funciones y declaraciones 38

3.6. Operadores relacionales 38
3.7. Operadores légicos 39
4. FUNCIONES DE LIBRERIA 40
4.1. Caracteristicas generales de las funciones de MATLAB 40
4.2. Equivalencia entre comandos y funciones 41
4.3. Funciones matematicas elementales que operan de modo escalar 42
4.4. Funciones que actiian sobre vectores 43
4.5. Funciones que actiian sobre matrices 43
4.5.1. Funciones matriciales elementales: 43
4.5.2. Funciones matriciales especiales 43
4.5.3. Funciones de factorizacion y/o descomposicion matricial 44
4.5.4. Funcion linsolve() 46

4.6. Mas sobre operadores relacionales con vectores y matrices 46
4.7. Otras funciones que actiian sobre vectores y matrices 48

4.8. Determinacion de la fecha y la hora 49

Aprenda Matlab 7.0 como si estuviera en Primero

4.9.

Funciones para calculos con polinomios

5. OTROS TIPOS DE DATOS DE MATLAB

5.1.
5.2.

5.3.

5.4.

5.5.

5.6.

Cadenas de caracteres

Hipermatrices (arrays de mas de dos dimensiones)

5.2.1. Definicién de hipermatrices

5.2.2. Funciones que trabajan con hipermatrices

Estructuras

5.3.1. Creacion de estructuras

5.3.2. Funciones para operar con estructuras

Vectores o matrices de celdas (Cell Arrays)

5.4.1. Creacidon de vectores y matrices de celdas

5.4.2. Funciones para trabajar con vectores y matrices de celdas
5.4.3. Conversion entre estructuras y vectores de celdas
Matrices dispersas (sparse)

5.5.1. Funciones para crear matrices dispersas (directorio sparfun)
5.5.2. Operaciones con matrices dispersas

5.5.3. Operaciones de algebra lineal con matrices dispersas
5.5.4. Reglas generales para operar con matrices dispersas
5.5.5. Permutaciones de filas y/o columnas en matrices sparse
Clases y objetos

6. PROGRAMACION DE MATLAB

6.1.

6.2.

6.3.

6.4.

6.5.

6.6.

Bifurcaciones y bucles

6.1.1. Sentencia if’

6.1.2. Sentencia switch

6.1.3. Sentencia for

6.1.4. Sentencia while

6.1.5. Sentencia break

6.1.6. Sentencia continue

6.1.7. Sentencias try...catch...end

Lectura y escritura interactiva de variables
6.2.1. funcion input

6.2.2. funcidn disp

Ficheros *.m

6.3.1. Ficheros de comandos (Scripts)

6.3.2. Definiciéon de funciones

6.3.3. Sentencia return

6.3.4. Funciones con numero variable de argumentos
6.3.5. Help para las funciones de usuario

6.3.6. Help de directorios

6.3.7. Sub-funciones

6.3.8. Funciones privadas

6.3.9. Funciones *.p

6.3.10. Variables persistentes

6.3.11. Variables globales

Referencias de funcion (function handles)

6.4.1. Creacion de referencias de funcion

6.4.2. Evaluacion de funciones mediante referencias
6.4.3. Informacion contenida por una referencia de funcion. Funciones sobrecargadas
6.4.4. Otros aspectos de las referencias de funcion
6.4.5. Utilidad de las referencias de funcion

6.4.6. Funciones inline

6.4.7. Funciones andnimas

6.4.8. Funciones anidadadas

Entrada y salida de datos

6.5.1. Importar datos de otras aplicaciones

6.5.2. Exportar datos a otras aplicaciones
Lectura y escritura de ficheros

pagina ii

49

51
51
53
53
53
54
54
55
56
56
57
57
57
58
59
60
61
61
62

63
63
64
64
65
66
66
66
66
66
66
67
67
68
68
69
69
70
71
71
72
72
72
72
72
73
74
75
76
76
77
77
77
79
79
79
80

Indice

6.6.1. Funciones fopen y fclose
6.6.2. Funciones fscanf, sscanf, fprintf’y sprintf
6.6.3. Funciones fread y fwrite
6.6.4. Ficheros de acceso directo
6.7. Recomendaciones generales de programacion
6.8. Acelerador JIT (Just In Time) en MATLAB
6.9. Llamada a comandos del sistema operativo y a otras funciones externas
6.10. Funciones de funcion
6.10.1. Integracion numérica de funciones
6.10.2. Ecuaciones no lineales y optimizacion
6.10.3. Integracion numérica de ecuaciones diferenciales ordinarias
6.10.4. Las funciones eval, evalc, feval y evalin
6.11. Distribucion del esfuerzo de calculo: Profiler

7. INTERFACES DE MATLAB CON OTROS LENGUAJES
7.1. Interfaces de MATLAB con DLLs genéricas
7.1.1. Introduccion
7.1.2. Cargary liberar las librerias de memoria
7.1.3. Conseguir informacién acerca de la libreria
7.1.4. Llamada a las funciones de una libreria
7.1.5. Conversion de datos
7.1.6. Paso de estructuras como argumentos
7.1.7. Paso de argumentos por referencia
7.2. Llamar desde MATLAB funciones programadas en C o Fortran
7.2.1. Introduccion a los ficheros MEX
7.2.2. Construccion de ficheros MEX
7.2.3. Creacion de ficheros MEX en C
7.2.4. Ejemplo de funciéon MEX programada en C
7.2.5. Depurar ficheros MEX en C en Windows
7.2.6. Depurar ficheros MEX en C en UNIX

8. GRAFICOS BIDIMENSIONALES

8.1. Funciones grificas 2D elementales
8.1.1. Funcion plot
8.1.2. Estilos de linea y marcadores en la funcion plot
8.1.3. Afiadir lineas a un grafico ya existente
8.1.4. Comando subplot
8.1.5. Control de los ejes: funcion axis()
8.1.6. Funcion line()
8.1.7. Funcion findobj()
8.2. Control de ventanas graficas: Funcion figure
8.3. Otras funciones graficas 2-D
8.3.1. Funcién fplot
8.3.2. Funcion fill para poligonos
8.3.3. Dibujo simplificado de funciones: Funciones ezplot() y ezpolar()
8.4. Entrada de puntos con el ratén
8.5. Preparacion de peliculas o "movies"
8.6. Impresion de las figuras en impresora laser
8.7. Las ventanas graficas de MATLAB

9. GRAFICOS TRIDIMENSIONALES

9.1. Tipos de funciones graficas tridimensionales
9.1.1. Dibujo simplificado de funciones 3-D: Funciones ezplot3(), ezsurf(), etc.
9.1.2. Dibujo de lineas: funcion plot3
9.1.3. Dibujo de mallados: Funciones meshgrid, mesh'y surf
9.1.4. Dibujo de lineas de contorno: funciones contour 'y contour3
9.2. Utilizacion del color en graficos 3-D

pagina iii

80
80
81
81
82
82
83
83
84
84
86
94
95

98
98
98
98
99
99
99

100

101

102

102

102

103

104

106

107

108
108
109
111
111
112
112
113
113
114
115
115
116
116
117
117
118
119

121
121
122
122
123
124
124

Aprenda Matlab 7.0 como si estuviera en Primero

9.2.1.
9.2.2.
9.2.3.
9.24.
9.2.5.
9.2.6.
9.2.7.

Mapas de colores

Imagenes y graficos en pseudocolor. Funcion caxis
Dibujo de superficies faceteadas

Otras formas de las funciones mesh y surf

Formas paramétricas de las funciones mesh, surf'y pcolor
Otras funciones graficas 3D

Elementos generales: ejes, puntos de vista, lineas ocultas, ...

pagina iv

125
125
126
126
127
127
128

Prélogo pagina 1

1. PROLOGO

La coleccion de manuales "Aprenda Informatica como si estuviera en Primero" naci6 en la Escuela
Superior de Ingenieros Industriales de San Sebastian (Universidad de Navarra) a lo largo de la dé-
cada de 1990, como consecuencia de la imparticion de las asignaturas Informéatica 1 e Informatica
2, introducidas en el Plan de Estudios de 1993.

El objetivo de esta coleccion era facilitar a los alumnos de las asignaturas citadas unos apuntes bre-
ves y sencillos, faciles de leer, que en unos casos ayudasen en el uso de las aplicaciones informati-
cas mas habituales para un ingeniero industrial y en otros sirvieran de introduccién a distintos len-
guajes de programacion.

Asi pues, los destinatarios directos de estos apuntes eran los alumnos de la Escuela de Ingenieros
Industriales de San Sebastian. Para facilitarles su uso, ademas de estar a la venta en el Servicio de
Reprografia, se introdujeron versiones "online" en formato PDF (Portable Document Format, de
Adobe), accesibles a través de las paginas Web de las mencionadas asignaturas. Los alumnos de
cursos superiores y algunos profesores los utilizaban también para actualizar sus conocimientos
cuando se instalaban nuevas versiones de las correspondientes aplicaciones.

Sin haberlos anunciado en ningtn indice o buscador, al cabo de cierto tiempo se observo que eran
accedidos con una frecuencia creciente desde el exterior de la Escuela, a través de Internet. Poco a
poco empezaron a llegar de todo el mundo de habla hispana correos electronicos que se interesaban
por nuevos titulos, daban noticia de erratas, solicitaban permiso para utilizarlos en la docencia de
otras instituciones o simplemente daban las gracias por haberlos puesto en Internet.

A la vista de estos efectos "no buscados", se establecid una pagina Web dedicada especialmente a
esta coleccion y se anuncio en los tres o cuatro portales mas importantes de lengua espafiola, lo que
hizo que en poco tiempo se multiplicaran los accesos.

A partir del curso 2000-01 el autor principal y creador de la coleccion se traslado a la Escuela Téc-
nica Superior de Ingenieros Industriales de la Universidad Politécnica de Madrid, de la que es ac-
tualmente catedratico en el area de Matematica Aplicada. El principal punto de entrada a la colec-
cion se encuentra ahora en la direccion http:// www.tayuda.com.. El nimero de accesos ha seguido
aumentando, llegando casi a 1.000.000 de ficheros en 2004.

Aunque el mantenimiento de esta coleccidon constituya un trabajo notable y no se saque ningun ren-
dimiento econdémico de ella, da particular alegria el realizar un trabajo que tantos miles de personas
consideran util. El mantenimiento de estos manuales va a ser mas dificil en los préximos afios, en
gran parte por el cambio en la actividad docente de su director o coordinador. Por eso seran bienve-
nidas todas aquellas ofertas de ayuda para mantener y crear esta coleccion de "Open Tutorials".

Madrid, diciembre de 2005.

Javier Garcia de Jalon de la Fuente
(javier.garciadejalon@upm.es)

Aprenda Matlab 7.0 como si estuviera en Primero pagina 2

2. INTRODUCCION

2.1. Acerca de este manual

Las primeras versiones de este manual estuvieron dirigidas a los alumnos de Informadtica 1 en la
Escuela Superior de Ingenieros Industriales de San Sebastian (Universidad de Navarra). Esta asig-
natura se cursa en el primer semestre de la carrera y el aprendizaje de MATLAB constituia la pri-
mera parte de la asignatura. Se trataba pues de un manual introductorio de una aplicacion que, para
muchos alumnos, iba a constituir su primer contacto "profesional" con los ordenadores y/o con la
programacion.

Desde el curso 2000-2001, este manual se ha adaptado a la asignatura de Matemadticas de la Espe-
cialidad (Mecdnica-Mdgquinas) (Plan 1976) y a las practicas de Algebra (Plan 2000) en la Escuela
Técnica Superior de Ingenieros Industriales de la Universidad Politécnica de Madrid. A partir del
curso 2001-02 este manual se pens6 subdivir en dos: "Aprenda MATLAB 7.0 como si estuviera en
Primero" y "Aprenda MATLAB 7.0 como si estuviera en Segundo", este Gltimo de caracter mas
avanzado'. En la practica, hasta la fecha, este segundo manual nunca ha llegado a ver la luz.

Por encima de las asignaturas citadas, este manual puede ser util a un publico mucho mas amplio,
que incluye a alumnos de cursos superiores de las Escuelas de Ingenieria Industrial, a alumnos de
Tercer Ciclo y a profesores que quieran conocer mas de cerca las posibilidades que tendria MA-
TLAB en sus asignaturas. MATLAB es una de las aplicaciones mads utiles que existen para poner a
punto métodos numéricos en distintas asignaturas de ingenieria. Por ser una herramienta de alto
nivel, el desarrollo de programas numéricos con MATLAB puede requerir hasta un orden de magni-
tud menos de esfuerzo que con lenguajes de programaciéon convencionales, como Fortran, Pascal,
C/C++, Java o Visual Basic.

Se ha pretendido llegar a un equilibrio entre el detalle de las explicaciones, la amplitud de temas
tratados y el nimero de paginas. En algunos casos, junto con las instrucciones introducidas por el
usuario se incluye la salida de MATLAB; en otros casos no se incluye dicha salida, pero se espera
que el lector disponga de un PC con MATLAB y vaya introduciendo esas instrucciones a la vez que
avanza en estas paginas. En muchas ocasiones se anima al lector interesado a ampliar el tema con la
ayuda del programa (toda la documentacion de MATLAB estd disponible on-line a través del
Help). En cualquier caso recuérdese que la informatica moderna, mas que en “saber como hacer
algo” consiste en “saber averiguar como hacerlo” en pocos segundos.

2.2. Novedades en este manual

Como corresponde a la nuava version de MATLAB que describe (la version 7.0), este manual con-
prende una completa revision del anterior, correspondiente a la version 6.5. En este sentido, por
ejemplo, todas las figuras del manual han sido renovadas, pues también el aspecto de la nueva ver-
sion de MATLAB es diferente, mas en unos aspectos que en otros.

Ademéas de la citada revision general, en este nuevo manual se hace referencia por primera vez a
ciertas novedades introducidas tanto en la version 6.5 como en la 7.0. Las mas adiciones mas im-
portantes son las siguientes:

1. Ayuday entorno de desarrollo mejorados (Apartado 2.5, a partir de la pagina 9).

2. Mejoras en el debugger, que permiten establecer puntos de parada de ejecucion condicional
(Apartado 2.5.7, pagina 16).

' En realidad, el manual "Aprenda Matlab como si estuviera en Segundo" no ha llegado a ver la luz (verano de 2004).

Es un viejo proyecto pendiente de disponer de tiempo para terminar su edicion. Si por fin se publica, aparecera de
inmediato en http://www.tayuda.com/ayudainf

Capitulo 2: Introduccion pagina 3

La posibilidad de comentar bloques de sentencias (Apartado 2.10, pagina 21).

4. Otros tipos de variables distintos de double. Aunque MATLAB trabaja por defecto con varia-
bles double, existe también la posibilidad de definir variables enteras de distinto rango, asi co-
mo variables reales de simple precision y variables logicas (Apartado 3.3.2, pagina 29).

5. Funcidn linsolve, que permite optimizar la resolucidon de sistemas de ecuaciones lineales, lo que
es quizas la tarea mas utilizada de MATLAB (Apartado 4.5.4, pagina 46).

6. Nuevos tipos de funciones, en concreto las funciones inline (Apartado 6.4.6, pagina 77), las
funciones anonimas (Apartado 6.4.7, pagina 77), y las funciones anidadas (Apartado 6.4.8, pa-
gina 77).

7. Ejecucion de funciuones programadas en C como librerias externas o ficheros MEX (Capitulo 7,
pagina 98).

8. Las funciones de dibujo simplificadas en 2-D (ezplot y ezpolar, Apartado 8.3.3, pagina 116) y
en 3-D (ezplot3 y ezsurf, Apartado 9.1.1, pagina 122).

9. Nuevas ventanas graficas, con muchas mas posibilidades de control interactivo de las propieda-
des (Apartado 8.7, pagina 119).

2.3. El programa MATLAB

MATLAB es el nombre abreviado de “MATrix LABoratory”. MATLAB es un programa @
para realizar calculos numéricos con vectores y matrices. Como caso particular puede
también trabajar con nimeros escalares —tanto reales como complejos—, con cadenas de
caracteres y con otras estructuras de informacion mas complejas. Una de las capacidades mas atrac-
tivas es la de realizar una amplia variedad de grdficos en dos y tres dimensiones. MATLAB tiene
también un lenguaje de programacion propio. Este manual hace referencia a la version 7.0 de este
programa (también llamada release 14), aparecida a mediados de 2004.

MATLAB 7.0

MATLAB es un gran programa de célculo técnico y cientifico. Para ciertas operaciones es muy
rapido, cuando puede ejecutar sus funciones en co6digo nativo con los tamafios mas adecuados para
aprovechar sus capacidades de vectorizacion. En otras aplicaciones resulta bastante mas lento que el
codigo equivalente desarrollado en C/C++ o Fortran. En la versiéon 6.5, MATLAB incorpor6 un
acelerador JIT (Just In Time), que mejoraba significativamente la velocidad de ejecucion de los
ficheros *.m en ciertas circunstancias, por ejemplo cuando no se hacen llamadas a otros ficheros
*.m, no se utilizan estructuras y clases, etc. Aunque limitado en ese momento, cuando era aplicable
mejoraba sensiblemente la velocidad, haciendo innecesarias ciertas técnicas utilizadas en versiones
anteriores como la vectorizacion de los algoritmos. En cualquier caso, el lenguaje de programacion
de MATLAB siempre es una magnifica herramienta de alto nivel para desarrollar aplicaciones téc-
nicas, facil de utilizar y que, como ya se ha dicho, aumenta significativamente la productividad de
los programadores respecto a otros entornos de desarrollo.

MATLAB dispone de un cddigo basico y de varias librerias especializadas (toolboxes). En estos
apuntes se hara referencia exclusiva al codigo basico.

MATLAB se puede arrancar como cualquier otra aplicacion de Windows, clicando dos veces en el
icono correspondiente en el escritorio o por medio del menu Inicio). Al arrancar MATLAB se abre
una ventana similar a la mostrada en la Figura 1. Esta es la vista que se obtiene eligiendo la opcion
Desktop Layout/Default, en el menu View. Como esta configuracion puede ser cambiada facilmen-
te por el usuario, es posible que en muchos casos concretos lo que aparezca sea muy diferente. En
cualquier caso, una vista similar se puede conseguir con el citado comando View/Desktop La-
yout/Default. Esta ventana inicial requiere unas primeras explicaciones.

Aprenda Matlab 7.0 como si estuviera en Primero pagina 4

<) MATLAB ; — (ol x|
Fle Edt Debug Desktop Window Help
D | & @ o o | B | % curentoredon: [F a =@
Shortcits (7] How to Add (2] Whet's New
Current Directory - __atlab70'Programas # X | RGIUMEREEEIG L 2 %
ok 5| @B -
T [Fie Tyee I To get started, select MATLAB Help or Demos from the Help menu.
(O Estruct Folder [
>> Aemagic (6]
Oo1a Folder] s
B atani.m n-file . i s 2e 15 34
E-RE n-file 3 3z 7 21 23 25
@ 3it2.m n-file 31 9 2 22 27 20
B Linearoli.m n-file i 8 28 23 17 10 15
[mifunc .m M-file ' 30 5 34 12 13 16
(@ Hovies.m n-file 1 4 35 28 13 18 11
(@ pretare.n H-file ' >
F@peli.n B-file i
EBprz.m B-file =
4 »
Current Directory | Workspace
Command History 2 X
TeTpwTT T —
doe i 4 1
profile on
x=-4:.01:4; y=sin(x); plot (»
profile viever
path
5-— 30/04/05 23:33 ——%
$-— 1/05/05 21:20 —-%
—imagic(s) =
ETEES] :
EXT 4

Figura 1. Ventana inicial de MATLAB 7.0.

La parte més importante de la ventana inicial es la Command Window, que aparece en la parte de-
recha. En esta sub-ventana es donde se ejecutan los comandos de MATLAB, a continuacion del
prompt (aviso) caracteristico (>>), que indica que el programa estd preparado para recibir instruc-
ciones. En la pantalla mostrada en la Figura 1 se ha ejecutado el comando A=magic(6), mostrando-
se a continuacion el resultado proporcionado por MATLAB.

|&%-- 10/06/04 17:15 —-3 l5s—- 10/06/04 17:15 -5
{7 1mport vizard 4\ MATLAB ¥ |pact

Shorteuts v 1 Profier Shorteuts »
B Deskiop Tools » B GUIDE (GUI Buiider) Sl =l Command History
@ web » £ Notebook @ web » 7] Current Directory
&% Preferences.. 1 Plot Took % Preferences.. @ View Source Files..,
Find Fles... - P #h Find Fies... =
& Help % Demos I & Help Path x
4 Demos @ MATLAR Centtral (Web) 4 Demos Workspace
4 start @ Product Page (Web) [4 Start

Figura 2. Menu Start/MATLAB. Figura 3. Menu Start/Desktop Tools.

En la parte superior izquierda de la pantalla aparecen dos ventanas también muy utiles: en la parte
superior aparece la ventana Current Directory, que se puede alternar con Workspace clicando en la
pestafia correspondiente. La ventana Current Directory muestra los ficheros del directorio activo o
actual. El directorio activo se puede cambiar desde la Command Window, o desde la propia ventana
(o desde la barra de herramientas, debajo de la barra de ments) con los métodos de navegacion de
directorios propios de Windows. Clicando dos veces sobre alguno de los ficheros *.m del directorio
activo se abre el editor de ficheros de MATLAB, herramienta fundamental para la programacion
sobre la que se volvera en las proximas paginas. El Workspace contiene informacion sobre todas las
variables que se hayan definido en esta sesion y permite ver y modificar las matrices con las que se
esté trabajando.

En la parte inferior derecha aparece la ventana Command History que muestra los ultimos coman-
dos ejecutados en la Command Window. Estos comandos se pueden volver a ejecutar haciendo
doble clic sobre ellos. Clicando sobre un comando con el botoén derecho del raton se muestra un
menu contextual con las posibilidades disponibles en ese momento. Para editar uno de estos co-
mandos hay que copiarlo antes a la Command Window.

Capitulo 2: Introduccion pagina 5

En la parte inferior izquierda de la pantalla aparece el boton Start, con una funcion andloga a la del
boton Inicio de Windows. Start da acceso inmediato a ciertas capacidades del programa. La Figura
2 muestra las posibilidades de Start/MATLAB, mientras que la Figura 3 muestra las opciones de
Start/Desktop Tools, que permiten el acceso a las principales componentes o modulos de MA-
TLAB. El menu Desktop realiza un papel analogo al botén Start, dando acceso a los mddulos o
componentes de MATLAB que se tengan instalados.

Puede hacerse que al arrancar MATLAB se ejecute automaticamente un fichero, de modo que apa-
rezca por ejemplo un saludo inicial personalizado. Esto se hace mediante un fichero de comandos
que se ejecuta de modo automatico cada vez que se entra en el programa (el fichero startup.m, que
debe estar en un directorio determinado, por ejemplo C:\Matlab701\Work. Ver apartado 2.7, en la
pagina 19).

Para apreciar desde el principio la potencia de MATLAB, se puede comenzar por escribir en la
Command Window la siguiente linea, a continuacion del prompt. Al final hay que pulsar intro.

>> A=rand(6) , B=inv (A), B*A

A =
0.9501 0.4565 0.9218 0.4103 0.1389 0.0153
0.2311 0.0185 0.7382 0.8936 0.2028 0.7468
0.6068 0.8214 0.1763 0.0579 0.1987 0.4451
0.4860 0.4447 0.4057 0.3529 0.6038 0.9318
0.8913 0.6154 0.9355 0.8132 0.2722 0.4660
0.7621 0.7919 0.9169 0.0099 0.1988 0.4186

B =
5.7430 2.7510 3.6505 0.1513 -6.2170 -2.4143
-4.4170 -2.5266 -1.4681 -0.5742 5.3399 1.5631
-1.3917 -0.6076 -2.1058 -0.0857 1.5345 1.8561
-1.6896 -0.7576 -0.6076 -0.3681 3.1251 -0.6001
-3.6417 -4.6087 -4.7057 2.5299 6.1284 0.9044
2.7183 3.3088 2.9929 -0.1943 -5.1286 -0.6537

ans =

1.0000 0.0000 0 0.0000 0.0000 -0.0000
0.0000 1.0000 0.0000 0.0000 -0.0000 0.0000
0 0 1.0000 -0.0000 -0.0000 0.0000
0.0000 0 -0.0000 1.0000 -0.0000 0.0000
-0.0000 0.0000 -0.0000 -0.0000 1.0000 0.0000
-0.0000 -0.0000 -0.0000 -0.0000 -0.0000 1.0000

En realidad, en la linea de comandos anterior se han escrito tres instrucciones diferentes, separadas
por comas. Como consecuencia, la respuesta del programa tiene tres partes también, cada una de
ellas correspondiente a una de las instrucciones. Con la primera instruccion se define una matriz
cuadrada (6x6) llamada A, cuyos elementos son numeros aleatorios entre cero y uno (aunque apa-
rezcan so6lo 4 cifras, han sido calculados con 16 cifras de precision). En la segunda instruccion se
define una matriz B que es igual a la inversa de A. Finalmente se ha multiplicado B por A, y se
comprueba que el resultado es la matriz unidad?.

Es con grandes matrices o grandes sistemas de ecuaciones como MATLAB obtiene toda la potencia
del ordenador. Por ejemplo, las siguientes instrucciones permiten calcular la potencia de calculo del
ordenador en Megaflops (millones de operaciones aritméticas por segundo). En la primera linea se
crean tres matrices de tamafio 10001000, las dos primeras con valores aleatorios y la tercera con
valores cero. La segunda linea toma tiempos, realiza el producto de matrices, vuelve a tomar tiem-
pos y calcula de modo aproximado el nimero de millones de operaciones realizadas. La tercera li-

2 Al invertir la matriz y al hacer el producto posterior se han introducido pequefios errores numéricos de redondeo en

el resultado, lo cual hace que no todos los elementos cero del resultado aparezcan de la misma forma.

Aprenda Matlab 7.0 como si estuviera en Primero pagina 6

nea calcula los Megaflops por segundo, para lo cual utiliza la funcion etime() que calcula el tiempo
transcurrido entre dos instantes definidos por dos llamadas a la funcion clock’:
>> n=1000; A=rand(n); B=rand(n); C=zeros(n);

>> tini=clock; C=B*A; tend=clock; mflops=(2*n~3)/1000000;
>> mflops/etime (tend, tini)

Otro de los puntos fuertes de MATLAB son los graficos, que se veran con mas detalle en una sec-
cion posterior. A titulo de ejemplo, se puede teclear la siguiente linea y pulsar intro:

>> x=-4:.01:4; y=sin(x); plot(x,y), grid, title('Funcidén seno(x)"')

En la Figura 4 se puede observar que se abre una gy S
nueva ventana en la que aparece representada la e s T -
funcién sin(x). Esta figura tiene un titulo "Funcion S
seno(x)" y una cuadricula o "grid". En realidad la P

linea anterior contiene también varias instruccio-
nes separadas por comas o puntos y comas. En la
primera se crea un vector x con 801 valores reales
entre -4 y 4, separados por una centésima. A conti-
nuacion se crea un vector y, cada uno de cuyos
elementos es el seno del correspondiente elemento
del vector x. Después se dibujan los valores de y
en ordenadas frente a los de x en abscisas. Las dos
ultimas instrucciones establecen la cuadricula y el L
titulo. 4 3 2 = 0 1 2 3 4

1

08

06

04

02

0

02}

04|

-06

-08

Un pequeiio aviso antes de seguir adelante. Ade- Figura 4. Grafico de la funcién seno(x).

mas de con la Command History, es posible recu-

perar comandos anteriores de MATLAB y moverse por dichos comandos con el ratén y con las te-
clas-flechas Ty V. Al pulsar la primera de dichas flechas aparecera el comando que se habia intro-
ducido inmediatamente antes. De modo andlogo es posible moverse sobre la linea de comandos con
las teclas «<— y —, ir al principio de la linea con la tecla Inicio, al final de la linea con Fin, y borrar
toda la linea con Esc. Recuérdese que solo hay una linea activa (la ultima).

Para borrar todas las salidas ante-
. . . : File Edit Debug Desktop Window W
riores de MATLAB y de-]ar hmpla O D’“| 2 B oo ‘ﬁ ﬁ‘ Full Froduct Farmity Help ork ﬂJ]
la Command Wlndow Se pueden Shortcuts [2] How to Add 2] What's Mey MATLAE Help F1
utilizar las funciones clc y home C””e"‘D‘”“f”*““’"‘“”“‘ e
: it S B -
La funcién cle (clear console) eli- e [e o De
1 3 M D Membership
mina todas las salidas anterlpres, Demos___ e L
mientras que home las mantiene, MATLAE Centra
. MATLAB Flle Exchange
pero lleva el prompt (>>) a la pri- MATLAB Newsgroup Access
mera linea de la ventana. HATEAE Do o
Si se desea salir de MATLAB basta Figura 5. Menu Help de MATLAB.

teclear los comandos quit o exit,
elegir Exit MATLAB en el menu File o utilizar cualquiera de los medios de terminar una aplicacion
en Windows.

En un portatil con Pentium IV Mobile a 2 Ghz el nimero de Mflops puede ser del orden de 1350. Hace 10 afios un
ordenador de esta potencia hubiera costado varios millones de Euros.

Capitulo 2: Introduccion pagina 7

2.4. Uso del Help

MATLAB 7.0 dispone de un excelente Help con el que se puede encontrar la informacion que se
desee. La Figura 5 muestra las distintas opciones que aparecen en el menu Help de la ventana prin-
cipal de la aplicacion:

1.

Full Product Family Help, Se abre la X

. Fle Edt Debug Deskicp Window | Help
ventana de la Figura 8, en la que se puede oz sm- © mo | ruecdcramyien " s e

. ., MATLAB Help F1
buscar informacion general sobre MA- ===t e Lo
TLAB o sobre otros productos de la fami- |22 &8 @-

Lising the Command Window
| Al Files - [Fite T Dam

. Check for Undates Froducts
lia a los que se tenga acceso. La forma de Demos venbershp

About MATLAE Technical SLpport Knowledae Baa

Shorculs (2] How 1o Add (2] What's N

The MathiArorks Web Site

la ventana de ayuda es tipica y comin con TR Contral

otros niveles de ayuda. La mayor parte de Eﬁﬁ@wm
las péaginas de ayuda estan en formato

HTML. Figura 6. Algunas paginas web sobre MATLAB.

MATLAB Help. Se abre la ventana de la [o v e roes s o ue

Xl T & M

Figura 9, en la que se puede buscar ayuda — |eue = s oo i s 3
general sobre MATLAB o sobre la fun- | % A o 5 A

cion o el concepto que se desee. La porta-
da de esta ayuda tiene tres capitulos prin-
cipales: Functions, que contiene informa-
cion de referencia sobre las funciones por
orden alfabético o por categorias; Handle
Graphics, que permite acceder a informa-
cion concreta sobre las distintas propieda-
des de los objetos graficos; Documenta-
tion Set, que da acceso a versiones com-
pletas de los manuales del programa en
formato de pantalla facilmente navegable Figura 7. Demos disponibles en MATLAB.

(con apartados de Getting Started, User Guides, Programming Tips y Examples in Documenta-
tion), Product Demos (con una coleccion de jemplos programados que se pueden ejecutar y cu-
yo cddigo se puede examinar para ver como estan programados), What's New (con las noveda-
des de esta version respecto a la anterior), Printing the Documentation Set (que permite abrir
documentos PDF (Portable Document Format), que se corrresponden con las versiones en papel
de los manuales del programa, y que precisan del programa Adobe Acrobat Reader 5.0 o supe-
rior.) y un apartado final sobre The MathWorks Web Site Resources (que permite acceder a una
amplisima coleccion de informaciones adicionales disponibles en la web de la empresa que ha
desarrollado MATLAB). En la parte izquierda de la ventana, cuando esta seleccionada la pesta-
na Contents, aparece un indice tematico estructurado en forma de arbol que puede ser desplega-
do y recorrido con gran facilidad. Las restantes pestafias de esta ventana dan acceso a un indice
por palabras (Index), a un formulario de busqueda (Search) y a la coleccion de ejemplos ya pro-
gramados antes citada (Demos).

Using the Desktop. Se abre una ventana de ayuda con un formato similar a las de las Figuras
anteriores con informacion detallada sobre como utilizar y configurar el entorno de desarrollo o
Desktop. Las distintas herramientas disponibles se describen sucesivamente. Cada pagina dis-
pone de flechas y enlaces que permiten ir a la pagina siguiente o volver a la anterior. Es posible
también imprimir aquellas paginas que se deseee consultar o archivar sobre papel. Una caracte-
ristica muy importante es la posibilidad de organizar las ventanas con gran flexibilidad, agru-
pandolas o independizandoles segun los propios gustos o deseos.

Aprenda Matlab 7.0 como si estuviera en Primero pagina 8

4. Using the Command Window. Esta opcion del ment Help da acceso a la informacion necesaria
para aprovechar las capacidades de la Command Window, que es el corazon de MATLAB.

5. Web Resources. La ;Error! No se encuentra el origen de la referencia. muestra algunas di-
recciones de Internet con informacion interesante sobre MATLAB. Todas ellas corresponden a
distintas secciones de la web de The Mathworks (la empresa que desarrolla y comercializa MA-
TLAB), cuya pagina de inicio se muestra en primer lugar.

6. Check for Updates. MATLAB se conecta con The Mathworks y comprueba si has versiones
mas recientes de los productos instalados. Si se es un usuario registrado, es posible descargar las
versiones mas actuales.

7. Demos. Se abre una ventana como la mostrada en la Figura 7 que da acceso a un buen niimero
de ejemplos resueltos con MATLAB, cuyos resultados se presentan graficamente de diversas
formas. Es muy interesante recorrer estos ejemplos para hacerse idea de las posibilidades del
programa, tanto en calculo como en graficos. Es asimismo muy instructivo analizar los ficheros
*.m de los ejemplos de caracteristicas similares a las de la aplicacion de se desea desarrollar.

Ademéas, de una forma muy inmediata, es posible también recurrir al Help desde la linea de coman-
dos de la Command Window. Se aconseja practicar un poco al respecto. Por ejemplo, obsérvese la
respuesta a los siguientes usos del comando help:

>> help
>> help lang

El comando helpwin seguido de un nombre de comando o de funcion muestra la informacién co-
rrespondiente a ese comando en la ventana Help (ver Figura 8). En la parte superior de la ventana
que se abre se muestra un enlace View code for ..., que permite acceder al codigo fuente si estd
disponible; con la opcion Go to online doc for ... se accede a una informacion mas completa que
puede incluir ejemplos y comandos similares sobre los que también se ofrece ayuda. En la parte
inferior de la pagina aparece una lista de enlaces See Also a funciones relacionadas.

El comando doc tecleado en la linea de comandos equivale a Help/Full Product Family Help; si va
seguido de un nombre de comando o funcion se muestra la informacion detallada correspondiente a
ese comando de modo similar a Go to online doc for ... en el parrafo anterior.

En resumen, MATLAB dispone de una ayuda muy completa y accesible, estructurada en varios
niveles (linea de comandos en la Command Window, ventana Help, y manuales en formato PDF),
con la que es muy importante estar familiarizado, porque hasta los mas expertos programadores
tienen que acudir a ella con una cierta frecuencia.

P Sl

Fle Edt View G0 Favortes Desfop Widow bep

Go Favortes Dedkop Widow Hep

e an [an
m.'-.,.,-l Bagen Hare =] Contents | s | Saarch| Damas | ™ o |
| Begin Here fill MATLAB B
I = Functions: Handle Graphics:
el If You Are Ug ding from a P, Rel - By Category - Object Properties

*In Alphabetical Order

Release Notes
Summarizes new features, bug fives, upgrade issues, etc

Documentation Set

“Video Tutorials I3
Seven audio-video tutorials are the best way to leamn the new features in
MATLAB.

* Getting Started
Introduces MATLAB and gets you started using it

= User Guides

If You Are Using MATLAB for the First Time... Provides tidorials and comprehensive information about MATLAB

LQHLUSSPESOOD 0P D

:AI the heart of MATLAB is a new language that you must leamn before you can

| |\ fully exploit its power, This isn't as hard as it might scund; you can leamn the L] | Programming Tips

basics of MATLAB very quickly. You will be rewarded with high-productaity, Provides helpful techniques and shortcuts for programming in MATLAB

high-creativity computing power that will change the way you wark.

Examples in Documentation

If you are a first-time user, the best way to get started Is to read thoroughly the Lists major npdes in the MATLAB

Gatting Started with MATLAB tutorial with MATLAB open so you can follow

along, The tutorial book comes with MATLAB and is available in PDF and for_

purchase on the MathiWorks Web site Product Demos
| . 51|l If you don't want to take the time to read it thoroughly, here are links to the most . Ml | MATLAB Demos -
| | .. i = e — = Pl mmrt ~ mmlnmbinm af o bl st 2 e B B Ll b sommn =

10 e € AAATLARI Matpochisc oy jaivmaliah_prodct_ags hmie

Figura 8. Ventana inicial de Help Full Product Family. Figura 9. Ventana inicial de Help Matlab.

Capitulo 2: Introduccion pagina 9

2.5. El entorno de trabajo de MATLAB

El entorno de trabajo de MATLAB es muy grafico e intuitivo, similar al de otras aplicaciones pro-
fesionales de Windows. En la introducciéon a MATLAB realizada en el Apartado 2.3 y en la Figura
1, ya se han citado algunas de las componentes mas importantes de este entorno de trabajo o de de-
sarrollo. Ahora de explicaran estas componentes con un poco mas de detalle.

Las componentes mas importantes del entorno de trabajo de MATLAB 7.0 son las siguientes:

1. El Escritorio de Matlab (Matlab Desktop), que es la ventana o contenedor de maximo nivel
en la que se pueden situar (to dock) las demas componentes.

2. Las componentes individuales, orientadas a tareas concretas, entre las que se puede citar:

La ventana de comandos (Command Window),

La ventana historica de comandos (Command History),

El espacio de trabajo (Workspace),

La plataforma de lanzamiento (Launch Pad),

El directorio actual (Current Directory),

La ventana de ayuda (Help)

El editor de ficheros y depurador de errores (Editor& Debugger),

El editor de vectores y matrices (Array Editor).

La ventana que permite estudiar como se emplea el tiempo de ejecucion (Profiler).

TR 0 A0 TR

A continuacién se describen brevemente estas componentes. Téngase en cuenta que utilizar MA-
TLAB y desarrollar programas para MATLAB es mucho mas facil si se conoce bien este entorno de
trabajo. Para alcanzar la méxima productividad personal en el uso de esta aplicacion es por ello muy
importante leer con atencidn las secciones que siguen.

2.5.1. EL ESCRITORIO DE MATLAB (MATLAB DESKTOP)

El Matlab Desktop es la ventana mas general de la aplicacion. El resto de las ventanas o componen-
tes citadas pueden alojarse en la Matlab Desktop o ejecutarse como ventanas independientes. A su
vez, los componentes alojados en el Matlab Desktop pueden aparecer como sub-ventanas indepen-
dientes o como pestafias dentro de una de las sub-ventanas. MATLAB 7.0 ofrece una gran flexibili-
dad al respecto y es cada usuario quien decide en qué forma desea utilizar la aplicacion.

Cuando se arranca MATLAB por primera vez o cuando se ejecuta el comando View/Desktop La-
yout/Default aparece una ventana como la mostrada en la Figura 10. Aunque dividida en tres zonas,
en realidad aparecen cuatro componentes, pues la sub-ventana superior izquierda contiene dos
componentes superpuestas que se permutan por medio de la pestafia correspondiente.

La Figura 11 muestra un detalle del menu Desktop, desde el que se controlan las componentes visi-
bles y la forma en que se visualizan. Por ejemplo, como en la Figura 10 la ventana activa es la
Command Window, en el menu de la Figura 11 aparece la opcion de dejar de alojar dicha ventana
en el Matlab Desktop (Undock Command Window). Dicho ment permite también eliminar del
Desktop alguna de las componentes visibles o visualizar el Help (que no esta visible). Con los sub-
menus de Desktop Layout se pueden adoptar algunas configuraciones predefinidas, como la confi-
guracion por defecto (Default) o incluir sélo la Command Window. La configuracion adoptada por
el usuario se mantendra la siguiente vez que arranque el programa. Es posible también guardar dis-
tintas configuraciones con distintos nombres, para su uso posterior.

Aprenda Matlab 7.0 como si estuviera en Primero

=lol x|
Fle Edt Detug Deskiop Window Hep
Dgk| &t Wl o oo || | CometDimctor: [CaDacsmansanstatisb!TFrogramas
Shancuts (2 How 1o Add (2 What's New

=L@

pagina 10

~=1olx|

Fie Edt Detug | Deskiop Window Hep
Dok W@ rundodC

Shancuts 2 How |

| OrgeeLayots.
- Demca from the Help me aoas oL a2 frca the Help =
Demcs from the Help menu. AaFies il om the Help menu.
pn o ¥ Clrrenk Droctory.

.
P ox
= |
Remagic| = A=magic (5] — |

 San - 4 San

Figura 10. Configuracion por defecto del Matlab Desktop.

Figura 11. Menu para configurar el Matlab Desktop.

I -l EENT——— =lojx]
Fle Edt View Debug Desktop Window Hep Fle Edt View Debug Desktop Window Hep
Dokt ml o oo | B | @] CommstDiwetory. [CDocaanaaes Matlsb TEragramas. =L@ Dok & Wl o oo || %] Comest Dimctory. [CDocsWansaiesMatlab7TFrogramas. =L@
Shancuts (2 How 1o Add (2 What's New Shancuts 2 How 1o Add (2 What's New
G [Comemand wisdow rx Workspace T [Command Window 3
SN E| |- |[ee -
To get started, select MATLAR Melp or Déncs frea the Help menu. Mame « Jovain [camss To get started, select MATLAR Melp or Déncs frea the Help menu.
Ej = Weooo
L —
[Command History ¥ %
o
4 Stant | Releasa the mouse button o dack Cemest Directory on the top s

Figura 12. Arrastrar una pestafia desde una sub-ventana.

Figura 13. Creacion de una nueva sub-ventana.

Ademas del ment mostrado en la Figura 11, que cambia en algunos detalles seglin cual sea la ven-
tana activa, el usuario puede configurar el Matlab Desktop por medio del ratén mediante algunas

operaciones como las siguientes:

1. Colocando el raton sobre los bordes intermedios de las sub-ventanas y arrastrando puede mo-

dificar su tamafo en la forma que desee.

2. Clicando sobre la barra de titulo de la sub-ventana activa y arrastrando (Figura 12) se puede
llevar a otra parte del Desktop, obteniéndose el resultado mostrado en la Figura 13.

3. Sitodas las ventanas se van seleccionando sucesivamente y se elige la correspondiente opcion
Undock... en el menu View, se podria obtener una configuracion como la mostrada en la
Figura 14, en la que todas las ventanas son independientes y aparecen separadas en la barra de

tareas.

4. Finalmente, si se parte de la configuracion por defecto y cada uno de los componentes se
arrastra sobre la Command Window se puede obtener una configuracion como la mostrada en
la Figura 15, en la que todos los componentes abiertos aparecen como pestafias alternativas en

una ventana unica.

Capitulo 2: Introduccion pagina 11

BT ——————— Snlk T —— ~ialxl
Fie Ede Debug Desktop Window Help Fle Edt Debug Desiiop Window Hep
DF| L Wl < o | R o| ¥ | ComntDrectory: [C\DocsManass MatlibT0Frogramus ﬂJm | 0 S B o oo [B o | % Cutent Dusetery [DocsMaraeratlab i Programan =@
Shestuts (8] How 1o Add 2] Whats New 1 Shorieily (6] How s Asd 2] What's New
i e
To get started, select yaTLA: MIRCMINEY =lolx]

Pl B Vinw Detu Dedtop W Hep = | To get atarted, selsct MATIAB Help or Demos from the Help menu

- - 1oy B 3 ol

Fe Edt Debug Dekicp Widow Hep e Edt view Graphics Debug Dekmp wndow Hb ~
nl’ eSS - | uk[Eaie 7]
o = [vais [o= e
o
¥nl*

| Commard Windps | Warkipace | Cumert Owectory| Command Festory
L) 1 o Sran |
Figura 14. Ventanas independientes sobre el Desktop. Figura 15. Todos los componentes compartiendo ventana.

La variedad de configuraciones mostradas en las figuras precedentes da una idea de las posibilida-
des de adaptacion a las preferencias del usuario que tiene la version 7.0 de MATLAB. Otros com-
ponentes como el Help Browser podrian afadirse a esta ventana de forma andloga. En los apartados
siguientes se analizan algunas de las posibilidades de cada componente.

2.5.2. COMMAND WINDOW

Esta es la ventana en la que se ejecutan interactivamente las instrucciones de MATLAB y en donde
se muestran los resultados correspondientes, si es el caso. En cierta forma es la ventana mds impor-
tante y la inica que existia en las primeras versiones de la aplicacion. En esta nueva version se han
afiadido algunas mejoras significativas, como las siguientes:

1. Se permiten lineas de comandos muy largas que automaticamente siguen en la linea siguiente
al llegar al margen derecho de la ventana. Para ello hay que activar la opcion Wrap Lines, en
el menu File/Preferences/Command Window.

2. Clicando con el boton derecho sobre el nombre de una funcién que aparezca en esta ventana
se tiene acceso a la pagina del Help sobre dicha funcién. Si el codigo fuente (fichero *.m) esta
disponible, también se puede acceder al fichero correspondiente por medio del Edi-
tor/Debugger.

3. Comenzando a teclear el nombre de una funcién y pulsando la tecla Tab, MATLAB completa
automaticamente ¢l nombre de la funcidn, o bien muestra en la linea siguiente todas las fun-
ciones disponibles que comienzan con las letras tecleadas por el usuario.

4. Cuando al ejecutar un fichero *.m se produce un error y se obtiene el correspondiente mensaje
en la Command Window, MATLAB muestra mediante un subrayado un enlace a la linea del
fichero fuente en la que se ha producido el error. Clicando en ese enlace se va a la linea co-
rrespondiente del fichero por medio del Editor/Debugger.

2.5.3. COMMAND HISTORY BROWSER

La ventana Command History ofrece acceso a las sentencias que se han ejecutado anteriormente en
la Command Window. Estas sentencias estan también accesibles por medio de las teclas Ty 4 co-
mo en las versiones anteriores, pero esta ventana facilita mucho el tener una vision mas general de
lo hecho anteriormente y seleccionar lo que realmente se desea repetir.

Las sentencias ejecutadas anteriormente se pueden volver a ejecutar mediante un doble clic o por
medio del menu contextual que se abre al clicar sobre ellas con el boton derecho. También se pue-

Aprenda Matlab 7.0 como si estuviera en Primero pagina 12

den copiar y volcar sobre la linea de comandos, pero se ha de copiar toda la linea, sin que se admita
la copia de un fragmento de la sentencia. Existen opciones para borrar algunas o todas las lineas de
esta ventana. Se puede también hacer un profile (evaluar la eficiencia relativa) de una sentencia o
de un grupo de sentencias.

2.5.4. CURRENT DIRECTORY BROWSER

El concepto de directorio activo o directorio actual es muy importante en MATLAB. Los progra-
mas de MATLAB se encuentran en ficheros con la extension *.m. Estos ficheros se ejecutan te-
cleando su nombre en la linea de comandos (sin la extension), seguido de los argumentos entre pa-
réntesis, si se trata de funciones. No todos los ficheros *.m que se encuentren en el disco duro o en
otras unidades 16gicas montadas en una red local son accesibles sin més. Para que un fichero *.m se
pueda ejecutar es necesario que se cumpla una de las dos condiciones siguientes:

1. Que esté en el directorio actual. MATLAB mantiene en todo momento un tnico directorio
con esta condicion. Este directorio es el primer sitio en el que MATLAB busca cuando desde
la linea de comandos se le pide que ejecute un fichero.

2. Que esté en uno de los directorios indicados en ¢l Path de MATLAB. El Path es una lista or-
denada de directorios en los que el programa busca los ficheros o las funciones que ha de eje-
cutar. Muchos de los directorios del Path son propios de MATLAB, pero los usuarios tam-
bién pueden anadir sus propios directorios, normalmente al principio o al final de la lista. En
un proximo apartado se vera como se controla el Path.

El comando pwd (de print working directory) permite saber cual es el directorio actual. Para cam-
biar de directorio actual se puede utilizar el comando cd (de change directory) en la linea de co-
mandos, seguido del nombre del directorio, para el cual se puede utilizar un path absoluto (por
ejemplo cd C:\Matlab\Ejemplos) o relativo (cd Ejemplos). Para subir un nivel en la jerarquia de
directorios se utiliza el comando cd .., y ¢d ../.. para subir dos niveles. Este es el mismo sistema que
se sigue para cambiar de directorio en las ventanas de MS-DOS. MATLAB permite utilizar la barra
normal (/) y la barra invertida (\), indistintamente.

La ventana Current Directory permite explorar los directorios del ordenador en forma analoga a la
del Explorador u otras aplicaciones de Windows. Cuando se llega al directorio deseado se muestran
los ficheros y ficheros alli contenidos. La ventana Current Directory permite ordenarlos por fecha,
tamafio, nombre, etc. El directorio actual cambia automaticamente en funcion del directorio selec-
cionado con este explorador, y también se puede cambiar desde la propia barra de herramientas del
Matlab Desktop. Los ficheros *.m mostrados en la ventana Current Directory se pueden abrir con
el Editor/Debugger mediante un doble clic.

A partir del menu contextual que se abre clicando con el boton derecho en cualquier parte de la ven-
tana Current Directory se tiene la posibilidad de afiadir ese directorio al Path de MATLAB.

2.5.5. PATHDE MATLAB: ESTABLECER EL CAMINO DE BUSQUEDA (SEARCH PATH)

MATLAB puede llamar a una gran variedad de funciones, tanto propias como programadas por los
usuarios. Puede incluso haber funciones distintas con el mismo nombre. Interesa saber cudles son
las reglas que determinan qué funcion o qué fichero *.m es el que se va a ejecutar cuando su nom-
bre aparezca en una linea de comandos del programa. Esto queda determinado por el camino de
busqueda (search path) que el programa utiliza cuando encuentra el nombre de una funcién.

El search path de MATLAB es una lista de directorios que se puede ver y modificar a partir de la
linea de comandos, o utilizando el cuadro de didlogo Set Path, del menu File. El comando path

Capitulo 2: Introduccion pagina 13

hace que se escriba el search path de MATLAB (el resultado depende de en qué directorio esté
instalado MATLAB; se muestran sélo unas pocas lineas de la respuesta real del programa):

>> path
>> path

MATLABPATH

:\MATLAB701\toolbox\matlab\general
:\MATLAB701\toolbox\matlab\ops
:\MATLAB701\toolbox\matlab\lang
:\MATLAB701\toolbox\matlab\elmat

Q0

:\MATLAB701\toolbox\matlab\helptools
:\MATLAB701\toolbox\matlab\winfun
:\MATLAB701\toolbox\matlab\demos
:\MATLAB701\toolbox\local

[ONONONeN

Para ver como se utiliza el search path supongase que se utiliza la palabra nombrel en un coman-
do. El proceso que sigue el programa para tratar de conocer qué es nombrel es el siguiente:

1.
2.

Comprueba si nombrel es una variable previamente definida por el usuario.
Comprueba si nombrel es una funcion interna o intrinseca de MATLAB.
Comprueba si nombrel es una sub-funcion o una funciodn privada del usuario (apartado 6.3).

Comprueba si hay un fichero llamado nombrel.mex, nombrel.dll o nombrel.m en el directo-
rio actual, cuyo contenido se obtiene con el comando dir. Ya se ha visto como se cambiaba el
directorio actual.

Comprueba si hay ficheros llamados nombrel.mex, nombrel.dll o nombrel.m en los directo-
rios incluidos en el search path de MATLAB.

Estos pasos se realizan por el orden indicado. En cuanto se encuentra lo que se estd buscando se
detiene la busqueda y se utiliza el fichero que se ha encontrado. Conviene saber que, a igualdad de
nombre, los ficheros *.mex tienen precedencia sobre los ficheros *.m que estan en el mismo direc-

torio.

#):Set Path 18] x|
& changes take effect immediately. 2 x|
MATLAE h path:
il Add Falder to Path
Add Folder .. | [0 ¢:yMATLAETO1Y toolhox' mat lak' genera
(] C:\MATLAE701Y toolbox\mat lab ops
Add with Subfolders ... En i AE701% too = P
| C: 4y MATLAE701Y too 3 A “e Discolocal {C)) ;I
[0 ¢\ MATLAB701Y too 1hox) mat Ha (2 Audio D (1) =
Wove to Top |] C:YMATLAE701Y toolboximat laby e lfun [S DATOS (F:)
CJ C:\MATLAE701\ toolboximat laby spectwl () OHistarico
howve Lip | 1 C: 4\ MATLAB7O1Y toolbox'mat lab matfun) 1Algebra
] | (L1 C: 4\ MATLABTO1Y too lbox' mat Lab' datatw) tdocs
1 C:YMATLAE701Y toolbox'mat lab' polyfw) tMatesp
Mave to Bottom | (1 ¢:\MATLAB7O01Y too lhox\mat Laky funtun = _}% LI
1 C:YMATLAE701Y toolbox'mat laby sparfw
L0 C:\MATLABTOL1Y toolbox mat lab' scr ibe =
Remove | 'TI | LlJ Carpeta I 1matlab
S | A | PR | i | ek Crear nueva carpeta | Acepkar I Cancelar |
[A
Figura 16. Cuadro de didlogo Set Path. Figura 17. Afadir un directorio al Path.

El cuadro de didlogo que se abre con el comando File/Set Path ayuda a definir la lista de directorios
donde MATLAB debe buscar los ficheros de comandos y las funciones, tanto del sistema como de
usuario. Al ejecutar dicho comando aparece el cuadro de didlogo de la Figura 16, en el cual se
muestra la lista de directorios en la que MATLAB buscara. Para afadir (o quitar) un directorio a

Aprenda Matlab 7.0 como si estuviera en Primero pagina 14

esta lista se debe clicar sobre los botones Add Folder o Add with Subfolders, con lo cual aparece un
nuevo cuadro de didlogo, mostrado en la Figura 17, que ayuda a elegir el directorio deseado. El
nuevo directorio se anade al comienzo de la lista, pero desde esa posicion puede desplazarse hacia
abajo o hasta el final con los botones Move Down o Move to Botton, respectivamente. Como ya se
ha dicho el orden de la lista es muy importante, porque refleja el orden de la busqueda: si dos fun-
ciones con el mismo nombre estdn en dos directorios diferentes, se utilizard la que primero se en-
cuentre. El cuadro de didlogo Ser Path contiene los botones necesarios para realizar todas las opera-
ciones que el usuario desee.

Para incluir desde la linea de comandos de MATLAB un directorio nuevo al comienzo del Path sin
utilizar el cuadro de didlogo Set Path, se puede utilizar también el comando path, que concatena
dos listas de directorios (solo se deben utilizar directorios que realmente existan en el PC), como
por ejemplo:

>> path('c:\mat\matlab', path)*’

mientras que para anadir el nuevo directorio al final de la lista, se utilizaria el comando:

>> path(path, 'c:\mat\practicas')

El comando addpath permite afiadir uno o mas directorios al Path. Su forma general puede verse en
los siguientes ejemplos:

>> addpath 'c:\Matlab' 'c:\Temp' -end
>> addpath 'c:\Matlab\Pruebas' 'c:\Temp\Pruebas' -begin

donde la opcion por defecto (cuando no se pone ni —begin ni —end) es anadir al comienzo de la lista.
Después de ejecutar estos comandos conviene comprobar cémo ha quedado modificado el search
path (recuérdese que los directorios deben existir en realidad).

No es dificil borrar las lineas que se han introducido en el Path: por una parte, los cambios no son
permanentes y dejaran de surtir efecto al salir de MATLAB y volver a entrar (salvo que se guarden
como opciones estables). Ademas se puede utilizar el comando rmpath (de remove path), al que se
le pasan la lista de directorios a eliminar del Path. Por ejemplo, el comando:

>> rmpath 'c:\Matlab' 'c:\Temp'

borra del Path los dos directorios indicados.

2.5.6. WORKSPACE BROWSER Y ARRAY EDITOR

El espacio de trabajo de MATLAB (Workspace) es el conjunto de variables y de funciones de usua-
rio que en un determinado momento estdn definidas en la memoria del programa o de la funcién
que se esta jecutando. Para obtener informacion sobre el Workspace desde la linea de comandos se
pueden utilizar los comandos who y whos. El segundo proporciona una informacion mas detallada
que el primero. Por ejemplo, una salida tipica del comando whos es la siguiente:

>> whos
Name Size Bytes Class
A 3x3 72 double array
B 3x3 72 double array
C 3x3 72 double array
D 3x3 72 double array

Grand total is 36 elements using 288 bytes

* El comando path dentro del paréntesis de la funcion devuelve la lista de directorios anterior.

Capitulo 2: Introduccion pagina 15

Estas son las variables del espacio de trabajo base (el de la linea de comandos de MATLAB). Mas
adelante se vera que cada funcion tiene su propio espacio de trabajo, con variables cuyos nombres
no interfieren con las variables de los otros espacios de trabajo.

La ventana Workspace constituye un entorno grafico para ver las variables definidas en el espacio
de trabajo. Se activa con el comando View/Workspace. La Figura 18 muestra el aspecto inicial de la
ventana Workspace cuando se abre desde un determinado programa. Haciendo doble clic por ejem-
plo sobre la matriz BARS aparece una nueva ventana (o pestafia, si la ventana ya existia) del Array
Editor, en la que se muestran y pueden ser modificados los elementos de dicha matriz (ver Figura
19).

=) Workspace 1Ol x| g4 Array Editor - BARS I =] 3
File Edit Wew Graphics Debug Deskbop Window Help] File Edit View Graphics Debug Deskiop ‘Window Help k] | X
"§ﬁ§|’ﬁ|' S‘tack:IBa..'I Eﬁ $E|§" t@|8tack: Eia...'l EE‘[DEEIE
| alue I Clazg 1 2 3 4 | s | -] 7
<13x3 double> double - 1 1 2| le+003 I I I j
<Bx2 dowbler double z 4 IS E ! ! !
<8x2 double> double 3 E| 3| ie+D03) ! ! !
4 z 4| 1e+nns
1e+007 double ﬂ 3 1e+009. T T T
1e+009 double & 3| % 5| 1esoos
<16x16 double> double T 4 5 1e+009
<4x4 doubler double 8 4| 8 1e+ons
<4x4 dowbler double 3 5| 5 ie+003]
2 double 10 5| 7] 1e+oog)
(1 0:0 1] dowsle 1 5 7| 1e+ooo
<4x4 doubler double e & & ietD03)
o5 R 13] 7| 8| 1e+009|
-0.5 double 1: T T T T T T i
3.3 double =l < Ll_l
4 A
Figura 18. Workspace Browser con elementos definidos. Figura 19. Array Editor (Editor de Matrices).

Es importante insistir en que cada una de las funciones de MATLAB tiene su propio espacio de
trabajo, al que en principio solo pertenecen las variables recibidas como argumentos o definidas
dentro de la propia funcién. En la barra de herramientas de la ventana Workspace aparece una lista
desplegable llamada Stack, con los espacios de trabajo del programa actual. Hay que tener en cuen-
ta que cuando se termina de ejecutar una funcion y se devuelve el control al programa que la habia
llamado, las variables definidas en la funcion dejan de existir (salvo que se hayan declarado como
persistent) y también deja de existir su espacio de trabajo.

Si se desean examinar otras matrices y/o vectores, al hacer doble clic sobre ellas el Array Editor las
muestra en la misma ventana como subventanas con una pestafia diferente.

Clicando con el botén derecho sobre alguna de las variables del Workspace Browser se abre un
menu contextual que ofrece algunas posibilidades interesantes, como por ejemplo la de representar
grdficamente dicha variable.

El Array Editor no s6lo permite ver los valores de los elementos de cualquier matriz o vector defi-
nido en el programa: es también posible modificar estos valores clicando sobre la celda correspon-
diente. La ventana del Array Editor incluye una lista desplegable en la que se puede elegir el forma-
to en el que se desea ver los datos.

El Array Editor es muy util también para entender bien ciertos algoritmos, ejecutando paso a paso
un programa y viendo como cambian los valores de las distintas variables. Es posible aparcar o si-
tuar las ventanas o pestafias del Array Editor en la misma ventana del Editor/Debugger, que se va a
ver a continuacion.

Aprenda Matlab 7.0 como si estuviera en Primero pagina 16

2.5.7. EL EDITOR/DEBUGGER

En MATLAB tienen particular importancia los ya citados ficheros-M (o M-files). Son ficheros de
texto ASCII, con la extension *.m, que contienen conjuntos de comandos o definicion de funcio-
nes (estos ultimos son un poco mas complicados y se veran mas adelante). La importancia de estos
ficheros-M es que al teclear su nombre en la linea de comandos y pulsar Intro, se ejecutan uno tras
otro todos los comandos contenidos en dicho fichero. El poder guardar instrucciones y grandes ma-
trices en un fichero permite ahorrar mucho trabajo de tecleado.

B Editor - F1docs!ManualesMatlabiMatlab70' Programas|Prue —[O] x| ‘B Editor - F:\1docs\Manuales'Matlab'Matlab70}Programas’Prue o] x|
File Edit Text Cell Tools Debug Desktop Window Help ¥ ‘ A X File Edit Text Cell Toolks Debug Desktop Window Help Ll ‘ A x
N E|IBR- ~|S(#4A |80 ARE BA|E -0 D@ E|i e = |3 A7 08000048 0]
bl % fichero Pruebal.m 1 %5 fichero Pruebal.m
2 - clear =ll 2~ olear all
3 - A=rand(3,3): 3@ LA=rand(3,3):
| 4- B=L':
5 - C=invild): 5 - c=inv(aj;
& - D=Cra; 68 D=CTAT e oo
B cicri' Y= be terminado') 77 APl 5 5013e-001 4.85982-001 4.5647e-001
v . 2.3114e-001 $.9130e-001 1.8504e—002
6.0684e-001 7.6210e-001 §.2141e-001
| detostm = [Pricgatm =] | | satostm = [Pruskatm = |
| seript [ns ca1 [owr A | serint Jtns ol 1 fovr 4
Figura 20. Ventana del Editor/Debugger. Figura 21. Ejecucion interactiva con el Editor/Debugger.

Aunque los ficheros *.m se pueden crear con cualquier editor de ficheros ASCII tal como Notepad,
MATLAB dispone de un editor que permite tanto crear y modificar estos ficheros, como ejecutarlos
paso a paso para ver si contienen errores (proceso de Debug o depuracion). La Figura 20 muestra la
ventana principal del Editor/Debugger, en la que se ha tecleado un fichero-M llamado Pruebal.m,
que contiene un comentario y seis sentencias’. El Editor muestra con diferentes colores los diferen-
tes tipos o elementos constitutivos de los comandos (en verde los comentarios, en violeta las cade-
nas de caracteres, etc.). El Editor se preocupa también de que las comillas o paréntesis que se abren,
no se queden sin el correspondiente elemento de cierre. Colocando el cursor antes o después de una
apertura o cierre de corchete o paréntesis y pulsando las teclas (<) o (—), el Editor muestra con
qué cierre o apertura de corchete o paréntesis se empareja el elemento considerado; si no se empare-
ja con ninguno, aparece con una rayita de tachado.

Seleccionando varias lineas y clicando con el boton derecho aparece un ment contextual cuya sen-
tencia Comment permite entre otras cosas comentar con el cardcter % todas las lineas selecciona-
das. Estos comentarios pueden volver a su condicioén de codigo ejecutable seleccionandolos y ejecu-
tando Uncomment en el menu contextual. Otra opcidon muy util de ese menu contextual es Smart
Indent, que organiza el sangrado de los bucles y bifurcaciones de las sentencias seleccionadas.

La Figura 21 corresponde a una ejecucion de este fichero de comandos controlada con el Debugger.
Dicha ejecucion se comienza eligiendo el comando Run en el meni Debug, pulsando la tecla F5,
clicando en el botén Continue (12]) de la barra de herramientas del Editor o tecleando el nombre
del fichero en la linea de comandos de la Command Window. Los puntos rojos que aparecen en el
margen izquierdo son breakpoints (puntos en los que se detiene la ejecucion de programa); la fle-
cha verde en el borde izquierdo indica la sentencia en que estd detenida la ejecucion (antes de eje-
cutar dicha sentencia); cuando el cursor se coloca sobre una variable (en este caso sobre A) aparece
una pequefia ventana con los valores numéricos de esa variable, tal como se ve en la Figura 21.

> Las seis sentencias de pruebal.m son las siguientes (reagrupadas en dos lineas):

clear all; A=rand(3,3); B=A";
C=inv (A); D=C*A; disp('Ya he terminado');

Capitulo 2: Introduccion pagina 17

En la Figura 21 puede apreciarse también que estan activados los botones que corresponden al De-
bugger. El significado de estos botones, que aparece al colocar sobre ellos el cursor, es el siguiente:

¢=| Set/Clear Breakpoint. Coloca o borra un breakpoint en la linea en que esta el cursor.
Clear All Breakpoints. Elimina todos los breakpoints que haya en el fichero.
Step. Avanzar un paso sin entrar en las funciones de usuario llamadas en esa linea.

Step In. Avanzar un paso, y si en ese paso hay una llamada a una funcién cuyo fichero
* m esta accesible, entra en dicha funcion.

Step Out. Salir de la funcion que se esta ejecutando en ese momento.

Continue. Continuar la ejecucion hasta el siguiente breakpoint.

B U

Quit Debugging. Terminar la ejecucion del Debugger.

Stack. En la parte derecha de la barra de herramientas aparece esta lista desplegable
(visible en la Figura 21 con las letras Pru...) mediante la cual se puede elegir el con-
texto, es decir el espacio de trabajo o el ambito de las variables que se quieren exami-
nar. Ya se ha comentado que el espacio de trabajo base (el de las variables creadas
desde la linea de comandos) y el espacio de trabajo de cada funcion son diferentes.

El Debugger es un programa que hay que conocer muy bien, pues es muy util para detectar y corre-
gir errores. Es también enormemente util para aprender métodos numéricos y técnicas de programa-
cion. Para aprender a manejar el Debugger 1o mejor es practicar.

Cuando se esta ejecutando un programa con el Debugger, en cualquier momento se puede ir a la
linea de comandos de MATLAB y teclear una expresion para ver su resultado. También se puede
seleccionar con el raton una sub-expresion en cualquier linea vista en el Editor/Debugger, clicar
con el boton derecho y en el menu contextual que se abre elegir Evaluate Selection. El resultado de
evaluar esa sub-expresion aparece en la linea de comandos de MATLAB.

Ya en las versiones anteriores MATLAB disponia de un Debugger alfanumérico que se utilizaba
desde la linea de comandos y en el que esta basado el nuevo Debugger grdfico del que se ha habla-
do anteriormente. De hecho, al realizar operaciones con el Debugger grdfico van apareciendo las
correspondientes instrucciones en la linea de comandos de MATLAB. Para mas informacion sobre
los comandos del Debugger alfanumérico, buscar en la seccion “Editing and Debugging M-Files”
en Help/Matlab/Desktop Tools and Development Environment.

Seleccionando el nombre de una funcion o de un fichero de comandos en el c6digo mostrado en la
ventana del Editor/Debugger y abriendo con el boton derecho el menu contextual correspondiente,
se ofrecen las tres posibilidades Evaluate Selection, Open Selection y Help on Selection, que son
muy utiles para comprobar, ver o recibir ayuda sobre la funcion seleccionada.

MATLAB permite también introducir breakpoints EIINT oy x|
condicionales (indicados con un punto amarillo, en File F:1.. lesibatiab Matiab70Programas"Prushal m
vez de rojo), en los que el programa se para solo si i
. .., . Condition for line 5 (for example, x ==1:
se cumple una determinada condicion. Para introdu- @ fozeta 10
cir un breakpoint condicional basta clicar con el

bOtéIl derecho en la correspondiente Hnea del C()dlgO Miote: the condition will be checked hefore the line is executed.
en la ventana del Editor/Debugger y elegir en el ok | cancel | hew | [

menu contextual que resulta Set/Modify Conditional
Breakpoint. Se abre una ventana como la mostrada Figura 22. Establecer una condicion en un breakpoint.
en la Figura 22 en la que se escribe la condicidon que debe cumplirse para que el programa se deten-
ga en dicho punto.

Aprenda Matlab 7.0 como si estuviera en Primero pagina 18

2.5.8. EL PROFILER

El profiler es un programa de utilidad que permite saber como se ha empleado el tiempo de la CPU
en la ejecucion de un determinado programa. El profiler es una herramienta muy util para determi-
nar los cuellos de botella de un programa, es decir las funciones y las lineas de codigo que mas ve-
ces se llaman y que se llevan la mayor parte del tiepo de ejecucion. Por ejemplo, es obvio que si se
trata de mejorar la eficiencia de un programa, seria mas importante mejorar una funciéon que se lle-
vase el 60% del tiempo total que otra que solo se llevase el 2%. Dentro de la funcion mas llamada,
el profiler proporcina informacion sobre el tiempo que se lleva cada sentencia, y da también algu-
nas orientaciones sobre las posibilidades de mejorarla.

Para explicar el profiler es mejor haber avanzado mas en el conocimiento de MATLAB. Por eso, su
presentacion se demorard hasta la seccion 6.11, a partir de la pagina 95.

2.6. Preferencias: Formatos de salida y de otras opciones de MATLAB

MATLAB 7.0 dispone de un cuadro de didlogo desde el que se establecen casi todas las opciones
que el usuario puede determinar por su cuenta. Este cuadro de didlogo se abre con el comando Pre-
ferences del menu File. En la Figura 23 se aparece el cuadro de didlogo Preferences mostrando
todas las posibilidades que ofrece en el menu de la izquierda: en total son 24 cuadros de didlogo
diferentes. La Figura 24 muestra el que permite elegir los colores generales del codigo.

«): Preferences == x|) Preferences =100 x|
General Preferences [EHGeneral Colors Preferences
AT Flles t«SAAT—F\IEs
ource Control Toolbax path caching ource Control Desktop tool colors
orts =-Forits
Lcustam [¥ Enahle toclkox path cache L custam ¥ use system colors
alars g . m
Text M - | Backarourd |l
ommand Windaw I™ Enable toolho:x path cache disgnostics ECammand Yincow o
l—Keyhnard & Inderting Upelste Taclhox Path Cache | \—Keybnard & Inderting M-file au highlighting colors
ormmand Histary ommand Histary
EHEcitorDebugger itor Mebugger Keywords M- | Caomments M-
isplay Figure window printing el = =
i Strings e | Unterminated strings i
eyhoard & Indenting Specity how colored lines and text are sent to the printer. Web t Divect z !
ahguage urrert Dirsctory E: | A
Llishing = Uge printer defauts \arkspace System commands | | Errors |
ublishing Images - -Arrary Editor
Always send as black and white
Autosave i LIDE Samel
—Help g} Always send as color igure Copy Tefmplate % create a file for output
Wik 'touch testFile.txt
—Current Directory Default behavior of the delete function fid = fopen('tescFile.oxt', 'w'];
—Wiorkspace .
| array Editor " Move files to the Recycle Bin for i=1:10 .
fprintf(fid,'%6.2L n, 11:
[GUIDE % Delete files permaneritly r { ’ ’ !
[E-Figure Copy Template end
opy Options
[}\ Restore Defaut Colors |
(=% | Cancel | Spply | Help | oK | Zahcel | Apply | Help |

Figura 23. Cuadro de didlogo Preferences/General. Figura 24. Cuadro de diadlogo Preferences/ Color.

El cuadro de didlogo Command Window/Fonts ofrece la posibilidad de elegir el tipo de letra —asi
como el tamafio y el color, tanto de las letras como del fondo— con la que se escribe en la ventana de
comandos de MATLAB. Es muy importante utilizar tipos de letra de tamafio constante (por ejem-
plo, Courier New, Lucida Console o Monospaced), para que las filas de las matrices se alineen
bien en la pantalla.

Respecto a los formatos numéricos con que MATLAB muestra los resultados (recuérdese que
siempre calcula con doble precision, es decir con unas 16 cifras decimales equivalentes), las posibi-
lidades existentes se muestran en la lista desplegable de la Figura 25 y son las siguientes:

short coma fija con 4 decimales (defecto)
long coma fija con 15 decimales

hex cifras hexadecimales

bank numeros con dos cifras decimales
short e notacion cientifica con 4 decimales

Capitulo 2: Introduccion pagina 19

short g notacion cientifica o decimal, dependiendo del valor

long e notacion cientifica con 15 decimales

long g notacion cientifica o decimal, dependiendo del valor
rational expresa los nimeros racionales como cocientes de enteros

Estos formatos se pueden cambiar también desde la linea de comandos anteponiendo la palabra
Jformat. Por ejemplo, para ver las matrices en formato long habra que ejecutar el comando:

>> format long

Por otra parte, el formato loose introduce algunas lineas en blanco en la salida (opcion por defecto),
mientras que el formato compact elimina las lineas en blanco citadas (es la opcion recomendada en
este manual). Estas opciones estan disponibles en el cuadro de didlogo de la Figura 25 y se pueden
también establecer desde la linea de comandos en la forma:

>> format compact
El cuadro de didlogo de la Figura 26 permite elegir un editor de programas distinto del que trae

MATLAB (built-in editor), asi como obligar a que los ficheros se abran de modo automatico al eje-
cutarlos con el Debugger.

=) Preferences P] 51 | -+) Preferences P] A |
eneral Command Window Preferences eneral EditorMebugger Preferences
I:glAT-Files t«SAAT.Fues
ource Cortral Text display aurce Cortral Editar
orts onts i
U Custom Mumeric format: I shorte ™ I L custom iy
alars i i olors B
ommand Yindow: R ARy ammand Yincow € Text ecitor: I J
‘—Keyboard & Incerting Display l—KEbeard & Indenting
ammand History ormmand History Most recently used filg list
EHEditorDebugger ¥ wrap lines E-EditorDebugger -
isglay isplay Mumber of ertries I 43
evhoard & hddenting ™ Limit mtrix ci eighty columns eyhoard & Indenting
anguage | anguage Opening files in editar
ublishing Mutnber of lihes if retional = fhdowe scroll buffer: g DDDHC ublishirg
ublishing Images ublishing Images ™ onrestart reopen files from previous MATLAE session
_HBIpAMUSEVE Accessibiity _He‘pAuiusave ¥ Show dislog prompt when editing files thet do not exist
ek ™ arrow keys navigate instead of recalling history ek %
—Current Directory —Current Directory Automatic file changes
—Workspace —Workspace
—erray Editar —drray Editar ¥ Reload unedited files that have been externally modified
—GLIDE —GUIDE A I
v
E-Figure Copy Template E-Figure Copy Template ¥ & line termination st end of file
LCUpy Options l—CDpy’ Options
Ok | Cancel | Apphy | Help | OK | Cancel | Apply | Help |

Figura 25. Cuadro de didlogo Prefs./Command Window. Figura 26. Cuadro de diadlogo Prefs./Editor&Debugger.

MATLAB aplica un factor de escala general a las matrices cuando los elementos no enteros mas
grandes 0 mas pequefios son superiores o inferiores a una determinada cantidad (10° y 107, respec-
tivamente). Hay que afiadir que MATLAB trata de mantener el formato de los nimeros que han
sido definidos como enteros (sin punto decimal). Si se elige la opcion format rational el programa
trata de expresar los niimeros racionales como cocientes de enteros.

2.7. Ficheros matlabre.m, startup.m y finish.m

El search path inicial o por defecto de MATLAB est4 definido en un fichero llamado matlabrc.m,
en el sub-directorio toolbox\local. Este fichero contiene también otros parametros de inicializacion
y es, por ejemplo, el responsable de los mensajes que aparecen al arrancar el programa. Este fichero
se ejecuta automaticamente al arrancar MATLAB.

En las instalaciones de MATLAB en red, matlabrc.m es un fichero controlado por el administrador
del sistema. Una de las cosas que hace este fichero es ver si en algin directorio del search path
existe otro fichero llamado startup.m, y en caso de que exista lo ejecuta. Esto abre la posibilidad de
que cada usuario arranque MATLAB de una forma personalizada. Si en el search path de MA-

Aprenda Matlab 7.0 como si estuviera en Primero pagina 20

TLAB se coloca un fichero creado por el usuario llamado starfup.m las instrucciones contenidas en
dicho fichero se ejecutaran automaticamente cada vez que arranque MATLAB.

Un posible contenido de este fichero puede ser el siguiente (crearlo con el Editor/Debugger):

>> format compact

>> addpath 'c:\Matlab\Practicas' -end

>> disp('jHola!'!"')
Se puede crear el fichero starfup.m en el directorio indicado y probar a arrancar MATLAB. Si el
saludo ;Hola! se sustituye por un saludo mas personal (por ejemplo, incluyendo el propio nombre),
se comprobara lo explicado previamente. Es muy aconsejable crear este fichero si MATLAB se
utiliza en un ordenador de uso personal.

De forma anéloga, al abandonar la ejecucion de MATLAB con el comando quit se ejecuta automa-
ticamente el fichero finish.m, siempre que se encuentre en alguno de los directorios del search
path. Este fichero se puede utilizar por ejemplo para guardar el espacio de trabajo de MATLAB
(ver apartado 2.8) y poder continuar en otro momento a partir del punto en el que se abandono el
trabajo, por ejemplo al cerrar el programa.

2.8. Guardar variables y estados de una sesion: Comandos save y load

En muchas ocasiones puede resultar interesante interrumpir el trabajo con MATLAB y poderlo re-
cuperar mas tarde en el mismo punto en el que se dejo (con las mismas variables definidas, con los
mismos resultados intermedios, etc.). Hay que tener en cuenta que al salir del programa todo el con-
tenido de la memoria se borra automaticamente.

Para guardar el estado de una sesion de trabajo existe el comando save. Si se teclea:

>> save

antes de abandonar el programa, se crea en el directorio actual un fichero binario llamado ma-
tlab.mat (o matlab) con el estado de la sesion (excepto los graficos, que por ocupar mucha memoria

hay que guardar aparte). Dicho estado puede recuperarse la siguiente vez que se arranque el pro-
grama con el comando:

>> load
Esta es la forma mas basica de los comandos save y load. Se pueden guardar también matrices y

vectores de forma selectiva y en ficheros con nombre especificado por el usuario. Por ejemplo, el
comando (sin comas entre los nombres de variables):

>> save filename A x y

guarda las variables A, x e y en un fichero binario llamado filename.mat (o filename). Para recupe-
rarlas en otra sesion basta teclear:

>> load filename
Si no se indica ninguna variable, se guardan todas las variables creadas en esa sesion.

El comando save permite guardar el estado de la sesion en formato ASCII utilizandolo de la si-
guiente forma (lo que va detras del caracter (%) es un comentario que es ignorado por MATLAB):

o\

>> save -ascii almacena 8 cifras decimales
>> save —-ascii -double almacena 16 cifras decimales
>> save -ascii -double -tab % almacena 16 cifras separadas por tabs

o

aunque en formato ASCII s6lo se guardan los valores y no otra informacion tal como los nombres
de las matrices y/o vectores. Cuando se recuperan estos ficheros con load -ascii toda la informacion

Capitulo 2: Introduccion pagina 21

se guarda en una Unica matriz con el nombre del fichero. Esto produce un error cuando no todas las
filas tienen el mismo numero de elementos.

Con la opcion -append en el comando save la informacion se guarda a continuacion de lo que
hubiera en el fichero.

El comando load admite las opciones -ascii y -mat, para obligarle a leer en formato ASCII o bina-
rio, respectivamente.

2.9. Guardar sesion y copiar salidas: Comando diary

Los comandos save y load crean ficheros binarios o ASCII con el estado de la sesion. Existe otra
forma mas sencilla de almacenar en un fichero un texto que describa lo que el programa va hacien-
do (la entrada y salida de los comandos utilizados). Esto se hace con el comando diary en la forma
siguiente:

>> diary filename. txt
>> diary off

>> diary on

El comando diary off suspende la ejecucion de diary y diary on la reanuda. El simple comando dia-
ry pasa de on a off'y viceversa. Para poder acceder al fichero filename.txt con Notepad o Word es
necesario que diary esté en off. Si en el comando diary no se incluye el nombre del fichero se utili-
za por defecto un fichero llamado diary (sin extension).

2.10. Lineas de comentarios

Ya se ha indicado que para MATLARB el caracter tanto por ciento (%) indica comienzo de comenta-
rio. Cuando aparece en una linea de comandos, el programa supone que todo lo que va desde ese
caracter hasta el fin de la linea es un comentario.

Mas adelante se vera que los comentarios de los ficheros *.m tienen algunas peculiaridades impor-
tantes, pues pueden servir para definir help's personalizados de las funciones que el usuario vaya
creando.

MATLAB permite comentar bloques de sentencias, es decir, muchas sentencias contiguas de una
vez. Una forma de hacerlo es seleccionar las sentencias que se desea comentar, clicar con el boton
derecho, y elegir la opcidon Comment en el menl que se abre; las sentencias selecionadas se comen-
tan individualmente con el caracter %. De forma similar se pueden eliminar los comentarios.

Otra forma de comentar bloques de sentencias (similar a la utilizada en C/C++ con /* y */) es ence-
rrar las lineas que se desea inutilizar entre los caracteres %{ y %}. Los bloques comentados pueden
incluirse dentro de otros bloques comentados mas amplios (bloques anidados).

2.11. Medida de tiempos y de esfuerzo de calculo

MATLAB dispone de funciones que permiten calcular el tiempo empleado en las operaciones ma-
tematicas realizadas. Algunas de estas funciones son las siguientes:

cputime devuelve el tiempo de CPU (con precision de centésimas de segundo) desde
que el programa arranc6. Llamando antes y después de realizar una operacion y
restando los valores devueltos, se puede saber el tiempo de CPU empleado en
esa operacion. Este tiempo sigue corriendo aunque MATLAB esté inactivo.

Aprenda Matlab 7.0 como si estuviera en Primero pagina 22

etime(t2, t1) tiempo transcurrido entre los vectores tl y t2 (jatencion al orden!), obtenidos
como respuesta al comando clock.

tic ops toc imprime el tiempo en segundos requerido por ops. El comando tic pone el reloj
a cero y foc obtiene el tiempo transcurrido.

A modo de ejemplo, el siguiente cédigo mide de varias formas el tiempo necesario para resolver un
sistema de 1000 ecuaciones con 1000 incdgnitas. Téngase en cuenta que los tiempos pequefios (del
orden de las décimas o centésimas de segundo), no se pueden medir con gran precision.

>> n=1000; A=rand(n); b=rand(n,l); x=zeros(n,l);

>> tiempoIni=clock; x=A\b; tiempo=etime (clock, tiempolIni)

>> time=cputime; x=A\b; time=cputime-time

>> tiec; x=A\b; toc

donde se han puesto varias sentencias en la misma linea para que se ejecuten todas sin tiempos
muertos al pulsar intro. Esto es especialmente importante en la linea de comandos en la que se quie-
re medir los tiempos. Todas las sentencias de calculos matriciales van seguidas de punto y coma (;)
con objeto de evitar la impresion de resultados. Conviene ejecutar dos o tres veces cada sentencia
para obtener tiempos Optimos, ya que la primera vez que se ejecutan se emplea un cierto tiempo en
cargar las funciones a memoria.

Capitulo 3: Operaciones con matrices y vectores pagina 23

3. OPERACIONES CON MATRICES Y VECTORES

Ya se ha comentado que MATLAB es fundamentalmente un programa para céalculo matricial. Ini-
cialmente se utilizara MATLAB como programa interactivo, en el que se iran definiendo las matri-
ces, los vectores y las expresiones que los combinan y obteniendo los resultados sobre la marcha. Si
estos resultados son asignados a otras variables podran ser utilizados posteriormente en otras expre-
siones. En este sentido MATLAB seria como una potente calculadora matricial (en realidad es esto
y mucho més...).

Antes de tratar de hacer calculos complicados, la primera tarea serd aprender a introducir matrices y
vectores desde el teclado. Mas adelante se veran otras formas mas potentes de definir matrices y
vectores.

3.1. Definicion de matrices desde teclado

Como en casi todos los lenguajes de programacion, en MATLAB las matrices y vectores son varia-
bles que tienen nombres. Ya se vera luego con mas detalle las reglas que deben cumplir estos nom-
bres. Por el momento se sugiere que se utilicen letras mayusculas para matrices y letras minuscu-
las para vectores y escalares (MATLAB no exige esto, pero puede resultar util).

Para definir una matriz no hace falta declararlas o establecer de antemano su tamario (de hecho, se
puede definir un tamafio y cambiarlo posteriormente). MATLAB determina el nimero de filas y de
columnas en funcién del nimero de elementos que se proporcionan (o se utilizan). Las matrices se
definen o introducen por filas®; los elementos de una misma fila estan separados por blancos o
comas, mientras que las filas estan separadas por pulsaciones intro o por caracteres punto y coma
(). Por ejemplo, el siguiente comando define una matriz A de dimension (3x3):

>> A=[1 2 3; 45 6; 7 8 9]

La respuesta del programa es la siguiente:

A =
1 2 3
4 5 6
7 8 9

A partir de este momento la matriz A estd disponible para hacer cualquier tipo de operacion con ella
(ademas de valores numéricos, en la definicién de una matriz o vector se pueden utilizar expresio-
nes y funciones matematicas). Por ejemplo, una sencilla operacion con A es hallar su matriz tras-
puesta. En MATLAB el apostrofo (') es el simbolo de transposicion matricial. Para calcular A'
(traspuesta de A) basta teclear lo siguiente (se afiade a continuacion la respuesta del programa):

>> A'

ans =
1 4 7
2 5 8
3 6 9

Como el resultado de la operacion no ha sido asignado a ninguna otra matriz, MATLAB utiliza un
nombre de variable por defecto (ans, de answer), que contiene el resultado de la iltima operacion.
La variable ans puede ser utilizada como operando en la siguiente expresion que se introduzca.
También podria haberse asignado el resultado a otra matriz llamada B:

® Aunque en MATLAB las matrices se introducen por filas, se almacenan por columnas, lo cual tiene su importancia

como se vera mas adelante.

Aprenda Matlab 7.0 como si estuviera en Primero pagina 24

>> B=A'

B =
1 4 7
2 5 8
3 6 9

Ahora ya estan definidas las matrices A y B, y es posible seguir operando con ellas. Por ejemplo, se
puede hacer el producto B*A (debera resultar una matriz simétrica):

>> B*A

ans =
66 78 90
78 93 108

90 108 126

En MATLAB se accede a los elementos de un vector poniendo el indice entre paréntesis (por ejem-
plo x(3) 6 x(i)). Los elementos de las matrices se acceden poniendo los dos indices entre paréntesis,
separados por una coma (por ejemplo A(1,2) 6 A(i,j)). Las matrices se almacenan por columnas
(aunque se introduzcan por filas, como se ha dicho antes), y teniendo en cuenta esto puede acceder-
se a cualquier elemento de una matriz con un solo subindice. Por ejemplo, si A es una matriz
(3%3) se obtiene el mismo valor escribiendo A(1,2) que escribiendo A(4).

Invertir una matriz es casi tan facil como trasponerla. A continuacion se va a definir una nueva ma-
triz A -no singular- en la forma:

>> A=[1 4 -3; 2 15; -2 5 3]

A =
1 4 -3

2 1 5

-2 5 3

Ahora se va a calcular la inversa de A y el resultado se asignard a B. Para ello basta hacer uso de la
funcién inv() (la precision o nimero de cifras con que se muestra el resultado se puede cambiar con
el menu File/Preferences/General):

B=inv (A)
B =
0.1803 0.2213 -0.1885
0.1311 0.0246 0.0902
-0.0984 0.1066 0.0574

Para comprobar que este resultado es correcto basta pre-multiplicar A por B;

>> B*A

ans =
1.0000 0.0000 0.0000
0.0000 1.0000 0.0000
0.0000 0.0000 1.0000

De forma anéloga a las matrices, es posible definir un vector fila x en la forma siguiente (si los tres
numeros estan separados por blancos o comas, ¢l resultado serd un vector fila):
>> x=[10 20 30] % vector fila
x =
10 20 30
Por el contrario, si los nimeros estdn separados por intros o puntos y coma (;) se obtendra un vec-
tor columna:

Capitulo 3: Operaciones con matrices y vectores pagina 25

>> y=[11; 12; 13] % vector columna
y =

11

12

13

MATLAB tiene en cuenta la diferencia entre vectores fila y vectores columna. Por ejemplo, si se
intenta sumar los vectores x e y se obtendra el siguiente mensaje de error:

>> x+y
??? Error using ==> +
Matrix dimensions must agree.

Estas dificultades desaparecen si se suma x con el vector transpuesto de y:

>> x+y'
ans =
21 32 43

MATLAB considera vectores fila por defecto, como se ve en el ejemplo siguiente:
>> x(1)=1, x(2)=2

1 2

A continuacion se van a estudiar estos temas con un poco mas de detenimiento.
3.2. Operaciones con matrices

3.2.1. OPERADORES ARITMETICOS

MATLAB puede operar con matrices por medio de operadores y por medio de funciones. Se han
visto ya los operadores suma (+), producto (*) y traspuesta ('), asi como la funcion invertir inv().
Los operadores matriciales de MATLAB son los siguientes:

+ adicidon o suma

- sustraccion o resta
* multiplicacion

' traspuesta

A potenciacion

\ divisidon-izquierda
/ divisién-derecha

o producto elemento a elemento
Jy .\ divisioén elemento a elemento
A elevar a una potencia elemento a elemento

Estos operadores se aplican también a las variables o valores escalares, aunque con algunas diferen-
cias’. Todos estos operadores son coherentes con las correspondientes operaciones matriciales: no
se puede por ejemplo sumar matrices que no sean del mismo tamano. Si los operadores no se usan
de modo correcto se obtiene un mensaje de error.

Los operadores anteriores se pueden aplicar también de modo mixte, es decir con un operando esca-
lar y otro matricial. En este caso la operacion con el escalar se aplica a cada uno de los elementos de
la matriz. Considérese el siguiente ejemplo:

" En términos de C++ se podria decir que son operadores sobrecargados, es decir, con varios significados distintos

dependiendo del contexto, es decir, de sus operandos.

Aprenda Matlab 7.0 como si estuviera en Primero pagina 26

>> A=[1 2; 3 4]

A =
1 2
3 4
>> A*2
ans =
2 4
6 8
>> A-4
ans =
-3 -2
-1 0

MATLAB utiliza el operador de division / para dividir por un escalar todos los elementos de una
matriz o un vector. Esto no constituye ninguna sorpresa. Sin embargo, el uso que se describe a con-
tinuacion si requiere mas atencion.

3.2.2. OPERADORES PARA LA RESOLUCION DE SISTEMAS DE ECUACIONES LINEALES

MATLAB utiliza los operadores de division para la resolucion de sistemas de ecuaciones lineales.
Por su gran importancia, estos operadores requieren una explicacion detenida. Considérese el si-
guiente sistema de ecuaciones lineales,

Ax=b (1)

donde x y b son vectores columna, y A una matriz cuadrada invertible. La resolucion de este siste-

ma de ecuaciones se puede escribir en las 2 formas siguientes (jAtencion a la 2* forma, basada en la
. . 8 ~

barra invertida (\)", que puede resultar un poco extrana!):

x =1nv(A)*b (2a)
x=A\b (2b)

Asi pues, el operador division-izquierda por una matriz (barra invertida \) equivale a pre-multiplicar
por la inversa de esa matriz. En realidad este operador es mds general y mds inteligente de lo que
aparece en el ejemplo anterior: el operador division-izquierda es aplicable aunque la matriz no tenga
inversa e incluso no sea cuadrada, en cuyo caso la solucidon que se obtiene (por lo general) es la que
proporciona el método de los minimos cuadrados. Cuando la matriz es triangular o simétrica apro-
vecha esta circunstancia para reducir el nimero de operaciones aritméticas. En algunos casos se
obtiene una soluciéon con no mas de r elementos distintos de cero, siendo r el rango de la matriz.
Esto puede estar basado en que la matriz se reduce a forma de escalon y se resuelve el sistema dan-
do valor cero a las variables libres o independientes. Por ejemplo, considérese el siguiente ejemplo
de matriz (1x2) que conduce a un sistema de infinitas soluciones:

>> A=[1 2], b=[2]

A =
1 2
b =
2
>> x=A\b
x =
0
1

que es la solucion obtenida dando valor cero a la variable independiente x(1). Por otra parte, en el
caso de un sistema de ecuaciones redundante (o sobre-determinado) el resultado de MATLAB es el
punto mas “cercano” -en el sentido de minima norma del error- a las ecuaciones dadas (aunque no

En inglés, MATLAB denomina mldivide a este operador. Para mas informacion, teclear help mldivide.

Capitulo 3: Operaciones con matrices y vectores pagina 27

cumpla exactamente ninguna de ellas). Véase el siguiente ejemplo de tres ecuaciones formadas por
una recta que no pasa por el origen y los dos ejes de coordenadas:

>> A=[1 2; 1 0; 0 1], b=[2 0 0]"

A =
1 2
1 0
0 1
b =
2
0
0

>> x=A\b, resto=A*x-b

0.3333
0.6667

-0.3333
0.3333
0.6667

Si la matriz es singular o estda muy mal escalada, el operador \ da un aviso (warning), pero propor-
ciona una solucion.

La “inteligencia” del operador barra invertida \ tiene un coste: MATLAB debe de emplear cierto
tiempo en determinar las caracteristicas de la matriz: triangular, simétrica, etc. Si el usuario conoce
perfectamente y con seguridad las caracteristicas de la matriz del sistema, lo mejor es utilizar la
funcioén linsolve (ver seccion 4.5.4, en la pagina 46), que no realiza ninguna comprobacion y puede
obtener la méaxima eficiencia.

Aunque no es una forma demasiado habitual, también se puede escribir un sistema de ecuaciones
lineales en la forma correspondiente a la traspuesta de la ecuacion (1):

yB=c 3)

donde y y ¢ son vectores fila (¢ conocido). Si la matriz B es cuadrada e invertible, la solucion de
este sistema se puede escribir en las formas siguientes:

y = c¢*inv(B) (4a)

y=c¢/B (4b)

En este caso, el operador division-derecha por una matriz (/) equivale a postmultiplicar por la in-

versa de la matriz. Si se traspone la ecuaciéon (3) y se halla la solucion aplicando el operador divi-
sion-izquierda se obtiene:

y' =B\’)
Comparando las expresiones (4b) y (5) se obtiene la relacion entre los operadores division-izquierda
y division-derecha (MATLAB solo tiene implementado el operador division-izquierda):

¢/B=((B")\c")' (6)

3.2.3. OPERADORES ELEMENTO A ELEMENTO

En MATLAB existe también la posibilidad de aplicar elemento a elemento los operadores matricia-
les (*,~, \'y /). Para ello basta precederlos por un punto (.). Por ejemplo:
>> [1 2 3 4172
??? Error using ==>
Matrix must be square.

A

Aprenda Matlab 7.0 como si estuviera en Primero pagina 28

>> [1 2 3 4].72
ans =
1 4 9 16

>> [1 2 3 4]*[1 -1 1 -1]
??? Error using ==> *
Inner matrix dimensions must agree.

> [1 2 3 4].*%[1 -1 1 -1]
ans =
1 -2 3 -4

3.3. Tipos de datos

Ya se ha dicho que MATLAB es un programa preparado para trabajar con vectores y matrices. Co-
mo caso particular también trabaja con variables escalares (matrices de dimension 1). MATLAB
trabaja siempre en doble precision, es decir guardando cada dato en 8 bytes, con unas 15 cifras de-
cimales exactas. Ya se vera mas adelante que también puede trabajar con cadenas de caracteres
(strings) y, desde la version 5.0, también con otros tipos de datos: Matrices de mds dos dimensio-
nes, matrices dispersas, vectores y matrices de celdas, estructuras y clases y objetos. Algunos de
estos tipos de datos mas avanzados se veran en la Gltima parte de este manual.

3.3.1. NUMEROS REALES DE DOBLE PRECISION

Los elementos constitutivos de vectores y matrices son nimeros reales almacenados en 8 bytes (53
bits para la mantisa y 11 para el exponente de 2; entre 15 y 16 cifras decimales equivalentes). Es
importante saber como trabaja MATLAB con estos nimeros y los casos especiales que presentan.

MATLAB mantiene una forma especial para los numeros muy grandes (mas grandes que los que es
capaz de representar), que son considerados como infinito. Por ejemplo, obsérvese como responde
el programa al ejecutar el siguiente comando:

>> 1.0/0.0
Warning: Divide by zero
ans =

Inf

Asi pues, para MATLAB el infinito se representa como inf 6 Inf. MATLAB tiene también una re-
presentacion especial para los resultados que no estan definidos como niimeros. Por ejemplo, ejecu-
tense los siguientes comandos y obsérvense las respuestas obtenidas:

>> 0/0
Warning: Divide by zero
ans =
NaN
>> inf/inf
ans =
NaN

En ambos casos la respuesta es NalV, que es la abreviatura de Not a Number. Este tipo de respuesta,
asi como la de Inf, son enormemente importantes en MATLAB, pues permiten controlar la fiabili-
dad de los resultados de los célculos matriciales. Los NaN se propagan al realizar con ellos cual-
quier operacion aritmética, en el sentido de que, por ejemplo, cualquier nimero sumado a un NalN
da otro NaN. MATLAB tiene esto en cuenta. Algo parecido sucede con los Inf.

MATLAB dispone de tres funciones utiles relacionadas con las operaciones de coma flotante. Estas
funciones, que no tienen argumentos, son las siguientes:

Capitulo 3: Operaciones con matrices y vectores pagina 29

eps devuelve la diferencia entre 1.0 y el nimero de coma flotante inmediatamente supe-
rior. Da una idea de la precision o nimero de cifras almacenadas. En un PC, eps va-
le 2.2204e-016.

realmin devuelve el nimero mas pequefio con que se puede trabajar (2.2251e-308)

realmax devuelve el nimero mas grande con que se puede trabajar (1.7977e+308)

3.3.2. OTROS TIPOS DE VARIABLES: INTEGER, FLOAT Y LOGICAL

Como ya se ha comentado, por defecto MATLAB trabaja con variables de punto flotante y doble
precision (double). Con estas variables pueden resolverse casi todos los problemas practicos y con
frecuencia no es necesario complicarse la vida declarando variables de tipos distintos, como se hace
con cualquier otro lenguaje de programacion. Sin embargo, en algunos casos es conveniente decla-
rar variables de otros tipos porque puede ahorrarse mucha memoria y pueden hacerse los calculos
mucho mas rapidamente.

MATLAB permite crear variables enteras con 1, 2, 4 y 8 bytes (8, 16, 32 y 64 bits). A su vez, estas
variables pueden tener signo o no tenerlo. Las variables con signo representan nimeros en interva-
los "casi" simétricos respecto al 0; las variables sin signo representan nimero no negativos, desde el
0 al nimero maximo.

Los tipos de los enteros con signo son int8, intl6, int32 ¢ int64, y sin signo uint8, uintl6, uint32 y
uint64. Para crear una variable entera de un tipo determinado se pueden utilizar sentencias como las
siguientes:

>> i=int32(100) ; % se crea un entero de 4 bytes con valor 100

>> j=zeros (100); i=int32(j); % se crea un entero i a partir de j
>> i=zeros(1000,1000,'int32'); % se crea una mariz 1000x1000 de enteros

Las funciones intmin('int64') ¢ intmax('int64') permiten por ejemplo saber el valor del entero mas
pequefio y mas grande (en valor algebraico) que puede formarse con variables enteras de 64 bits:

>> disp([intmin('int64"'), intmax('int64')])
-9223372036854775808 9223372036854775807

La funcion isinteger(i) devuelve 1 si la variable i es entera y 0 en otro caso. La funcion class(i) de-
vuelve el tipo de variable que es i (int8, intl6, ...), mientras que la funcién isa(i, 'int16') permite
saber exactamente si la variable i corresponde a un entero de 16 bits.

MATLAB dispone de dos tipos de variables reales o float: single y double, que ocupan respectiva-
mente 4 y 8 bytes. Por defecto se utilizan doubles. Las funciones single(x) y double(y) permiten
realizar conversiones entre ambos tipos de variables.

Las funciones realmin y realmax permiten saber los nimeros double mas pequefio y mas grande
(en valor absoluto) que admite el computador. Para los correspondientes nimeros de simple preci-
sion habria que utilizar realmin('single') y realmax('single'). La funcion isfloat(x) permite saber si
X es una variable real, de simple o doble precision. Para saber exactamente de qué tipo de variable
se rata se pueden utilizar las funciones isa(x, 'single') 6 isa(x, 'double'). Obsérvese el ejemplo si-
guiente, en el que se ve como con variables single se reduce el tiempo de CPU y la memoria:

>> n=1000; AA=rand(n); A=single (AA);

>> tic, Bs=inv(A); toc

Elapsed time is 1.985000 seconds.

>> tic, Bd=inv (AA); toc

Elapsed time is 4.296000 seconds.

Quizas las variables mas interesantes —aparte de las variables por defecto, las double— sean las va-
riables logical, que solo pueden tomar los valores true (1) y false (0). Las variables logicas surgen

Aprenda Matlab 7.0 como si estuviera en Primero pagina 30

como resultado de los operadores relacionales (==, <, <=, >, >= ~=, ver Apartado 3.6, en la pagina
38) y de muchas funciones logicas como any y all que se aplican a vectores y matrices, y que se
veran en el Apartado 4.6, a partir de la pagina 46.

La funcion logical(A) produce una variable l6gica, con el mismo nimero de elementos que A, con
valores 1 6 0 segun el correspondiente elementos de A sea distinto de cero o igual a cero.

Una de las aplicaciones mas importantes de las variables logicas es para separar o extraer los elemn-
tos de una matriz o vector que cumplen cierta condicion, y operar luego selectivamente sobre dichos
elementos. Obsérvese, el siguiente ejemplo:

>> A=magic (4)

A =
16 2 3 13
5 11 10 8
9 7 6 12
4 14 15 1
>> §=A>10
j:
1 0 0 1
0 1 0 0
0 0 0 1
0 1 1 0
>> isa(j,'logical')
ans =
1
>> A(j)=-10
A =
-10 2 3 -10
5 -10 10 8
9 7 6 -10
4 -10 -10 1

3.3.3. NUMEROS COMPLEJOS: FUNCION COMPLEX

En muchos célculos matriciales los datos y/o los resultados no son reales sino complejos, con parte
real y parte imaginaria. MATLAB trabaja sin ninguna dificultad con nlimeros complejos. Para ver
como se representan por defecto los nimeros complejos, ejecutense los siguientes comandos:

>> a=sqrt(-4)

a:

0 + 2.00004
>> 3 + 43
ans =

3.0000 + 4.00001

En la entrada de datos de MATLAB se pueden utilizar indistintamente la i y la j para representar el
numero imaginario unidad (en la salida, sin embargo, puede verse que siempre aparece la i). Sila i
o la j no estan definidas como variables, puede intercalarse el signo (*). Esto no es posible en el
caso de que si estén definidas, porque entonces se utiliza el valor de la variable. En general, cuando
se esta trabajando con niimeros complejos, conviene no utilizar la i como variable ordinaria, pues
puede dar lugar a errores y confusiones. Por ejemplo, obsérvense los siguientes resultados:

>> i=2

i =

2
>> 2431
ans =
2.0000 + 3.00001
>> 243*i

Capitulo 3: Operaciones con matrices y vectores pagina 31

ans =

8
>> 2+43%j
ans =

2.0000 + 3.00001

Cuando i y j son variables utilizadas para otras finalidades, como unidad imaginaria puede utilizar-
se también la funcidn sqrt(-1), o una variable a la que se haya asignado el resultado de esta funcion.

La asignacion de valores complejos a vectores y matrices desde teclado puede hacerse de las dos
formas, que se muestran en el ejemplo siguiente (conviene hacer antes clear i, para que i no esté
definida como variable; este comando se estudiard mas adelante):
>> A = [1+42i 2+43i; -1+4i 2-3i]
A =
1.0000 + 2.00001 2.0000 + 3.00001
-1.0000 + 1.00001 2.0000 - 3.00001
> A =1 2; -1 2] + [2 3; 1 -3]*I % En este caso el * es necesario
A =
1.0000 + 2.0000i 2.0000 + 3.0000i
-1.0000 + 1.00001 2.0000 - 3.00001

Puede verse que es posible definir las partes reales e imaginarias por separado. En este caso si es
necesario utilizar el operador (*), segiin se muestra en el ejemplo anterior.

MATLAB dispone asimismo de la funciéon complex, que crea un numero complejo a partir de dos
argumentos que representan la parte real e imaginaria, como en el ejemplo siguiente:
>> complex(1,2)

ans =
1.0000 + 2.00001

Es importante advertir que el operador de matriz traspuesta ('), aplicado a matrices complejas, pro-
duce la matriz conjugada y traspuesta. Existe una funcion que permite hallar la matriz conjugada
(conj())y el operador punto y apostrofo (.') que calcula simplemente la matriz traspuesta.

3.3.4. CADENAS DE CARACTERES

MATLAB puede definir variables que contengan cadenas de caracteres. En MATLAB las cadenas
de texto van entre apostrofos o comillas simples (Notese que en C van entre comillas dobles: "cade-
na"). Por ejemplo, en MATLAB:

s = 'cadena de caracteres'

Las cadenas de texto tienen su mas clara utilidad en temas que se veran mas adelante y por eso se
difiere hasta entonces una explicacion mas detallada.

3.4. Variables y expresiones matriciales

Ya han aparecido algunos ejemplos de variables y expresiones matriciales. Ahora se va a tratar de
generalizar un poco lo visto hasta ahora.

Una variable es un nombre que se da a una entidad numérica, que puede ser una matriz, un vector o
un escalar. El valor de esa variable, ¢ incluso el tipo de entidad numérica que representa, puede
cambiar a lo largo de una sesion de MATLAB o a lo largo de la ejecucion de un programa. La for-
ma mas normal de cambiar el valor de una variable es colocandola a la izquierda del operador de
asignacion (=).

Una expresion de MATLAB puede tener las dos formas siguientes: primero, asignando su resultado
a una variable,

Aprenda Matlab 7.0 como si estuviera en Primero pagina 32

variable = expresidn
y segundo evaluando simplemente el resultado del siguiente modo,
expresidn

en cuyo caso el resultado se asigna automaticamente a una variable interna de MATLAB llamada
ans (de answer) que almacena el ultimo resultado obtenido. Se considera por defecto que una ex-
presion termina cuando se pulsa intro. Si se desea que una expresion continue en la linea siguiente,
hay que introducir #res puntos (...) antes de pulsar intro. También se pueden incluir varias expresio-
nes en una misma linea separandolas por comas (,) o puntos y comas (;).

Si una expresion termina en punto y coma (;) su resultado se calcula, pero no se escribe en pantalla.
Esta posibilidad es muy interesante, tanto para evitar la escritura de resultados intermedios, como
para evitar la impresion de grandes cantidades de nimeros cuando se trabaja con matrices de gran
tamano.

A semejanza de C, MATLAB distingue entre mayusculas y minusculas en los nombres de varia-
bles. Los nombres de variables deben empezar siempre por una letra y pueden constar de hasta 63
letras y numeros. La funcion namelengthmax permite preguntar al programa por este nimero
maximo de caracteres. El caracter guion bajo () se considera como una letra. A diferencia del len-
guaje C, no hace falta declarar las variables que se vayan a utilizar. Esto hace que se deba tener es-
pecial cuidado con no utilizar nombres erréneos en las variables, porque no se recibira ningiin aviso
del ordenador.

Cuando se quiere tener una relacion de las variables que se han utilizado en una sesion de trabajo
se puede utilizar el comando who. Existe otro comando llamado whos que proporciona ademads in-
formacion sobre el tamafo, la cantidad de memoria ocupada y el caracter real o complejo de cada
variable. Se sugiere utilizar de vez en cuando estos comandos en la sesion de MATLAB que se tie-
ne abierta. Esta misma informacion se puede obtener graficamente con el Workspace Browser, que
aparece con el comando View/Workspace o activando la ventana correspondiente si estaba abierto.

El comando clear tiene varias formas posibles:

clear sin argumentos, clear elimina todas las variables creadas previamente (ex-
cepto las variables globales).

clear A, b borra las variables indicadas.

clear global borra las variables globales.

clear functions borra las funciones.
clear all borra todas las variables, incluyendo las globales, y las funciones.

3.5. Otras formas de definir matrices

MATLAB dispone de varias formas de definir matrices. El introducirlas por teclado sélo es practico
en casos de pequefio tamafio y cuando no hay que repetir esa operacion muchas veces. Recuérdese
que en MATLAB no hace falta definir el tamafio de una matriz. Las matrices toman tamafo al ser
definidas y este tamafio puede ser modificado por el usuario mediante adicidon y/o borrado de filas y
columnas. A continuacion se van a ver otras formas mas potentes y generales de definir y/o modifi-
car matrices.

3.5.1. TIPOS DE MATRICES PREDEFINIDOS

Existen en MATLAB varias funciones orientadas a definir con gran facilidad matrices de tipos par-
ticulares. Algunas de estas funciones son las siguientes:

eye(4) forma la matriz unidad de tamafio (4x4)

Capitulo 3: Operaciones con matrices y vectores pagina 33

zeros(3,5) forma una matriz de ceros de tamaio (3x5)
zeros(4) idem de tamano (4x4)
ones(3) forma una matriz de unos de tamano (3%3)
ones(2,4) idem de tamafio (2x4)

linspace(x1,x2,n) genera un vector con n valores igualmente espaciados entre x1 y x2
logspace(d1,d2,n) genera un vector con n valores espaciados logaritmicamente entre
10~d1 y 10°d2. Si d2 es pi’, los puntos se generan entre 10°d1 y pi

rand(3) forma una matriz de nimeros aleatorios entre 0 y 1, con distribucion
uniforme, de tamano (3x3)

rand(2,5) idem de tamafio (2x5)

randn(4) forma una matriz de nimeros aleatorios de tamafio (4x4), con distribu-

cion normal, de valor medio 0 y varianza 1.

magic(4) crea una matriz (4x4) con los ntimeros 1, 2, ... 4*4, con la propiedad de
que todas las filas y columnas suman lo mismo

hilb(5) crea una matriz de Hilbert de tamafio (5%5). La matriz de Hilbert es una
matriz cuyos elementos (i,j) responden a la expresion (1/(i+j-1)). Esta es
una matriz especialmente dificil de manejar por los grandes errores nu-
méricos a los que conduce

invhilb(5) crea directamente la inversa de la matriz de Hilbert

kron(x,y) produce una matriz con todos los productos de los elementos del vector
x por los elementos del vector y. Equivalente a x'*y, donde x e y son
vectores fila

compan(pol) construye una matriz cuyo polinomio caracteristico tiene como coefi-
cientes los elementos del vector pol (ordenados de mayor grado a me-
nor)

vander(v) construye la matriz de Vandermonde a partir del vector v (las columnas

son las potencias de los elementos de dicho vector)

Existen otras funciones para crear matrices de tipos particulares. Con Help/Matlab Help se puede
obtener informacion sobre todas las funciones disponibles en MATLAB, que aparecen agrupadas
por categorias o por orden alfabético. En la categoria Mathematics aparecen la mayor parte de las
funciones estudiadas en este apartado.

3.5.2. FORMACION DE UNA MATRIZ A PARTIR DE OTRAS

MATLAB ofrece también la posibilidad de crear una matriz a partir de matrices previas ya defini-
das, por varios posibles caminos:

— recibiendo alguna de sus propiedades (como por ejemplo el tamafio),
— por composicion de varias submatrices mas pequeiias,
— modificandola de alguna forma.

A continuacion se describen algunas de las funciones que crean una nueva matriz a partir de otra o
de otras, comenzando por dos funciones auxiliares:

° pi es una variable predefinida en MATLAB, que como es facil suponer representa el namero .

Aprenda Matlab 7.0 como si estuviera en Primero pagina 34

[m,n]=size(A) devuelve el nimero de filas y de columnas de la matriz A. Si la matriz es
cuadrada basta recoger el primer valor de retorno

n=length(x) calcula el nimero de elementos de un vector x

zeros(size(A)) forma una matriz de ceros del mismo tamafio que una matriz A previamen-

te creada

ones(size(A)) idem con unos

A=diag(x) forma una matriz diagonal A cuyos elementos diagonales son los elemen-
tos de un vector ya existente x

x=diag(A) forma un vector x a partir de los elementos de la diagonal de una matriz ya

existente A

diag(diag(A)) crea una matriz diagonal a partir de la diagonal de la matriz A

blkdiag(A,B) crea una matriz diagonal de submatrices a partir de las matrices que se le
pasan como argumentos

triu(A) forma una matriz triangular superior a partir de una matriz A (no tiene por
qué ser cuadrada). Con un segundo argumento puede controlarse que se
mantengan o eliminen mas diagonales por encima o debajo de la diagonal

principal.

tril(A) idem con una matriz triangular inferior

rot90(A.k) Gira k*90 grados la matriz rectangular A en sentido antihorario. k es un
entero que puede ser negativo. Si se omite, se supone k=1

flipud(A) halla la matriz simétrica de A respecto de un eje horizontal

fliplr(A) halla la matriz simétrica de A respecto de un eje vertical

reshape(A,m,n) Cambia el tamafio de la matriz A devolviendo una matriz de tamafio m xn
cuyas columnas se obtienen a partir de un vector formado por las columnas
de A puestas una a continuacion de otra. Si la matriz A tiene menos de
mxn elementos se produce un error.

Un caso especialmente interesante es el de crear una nueva matriz componiendo como submatrices
otras matrices definidas previamente. A modo de ejemplo, ejecutense las siguientes lineas de co-
mandos y obsérvense los resultados obtenidos:

>> A=rand (3)

>> B=diag(diag(a))
>> C=[A, eye(3); zeros(3), B]

En el ejemplo anterior, la matriz C de tamafio (6x6) se forma por composicion de cuatro matrices
de tamafio (3x3). Al igual que con simples escalares, las submatrices que forman una fila se separan
con blancos o comas, mientras que las diferentes filas se separan entre si con intros o puntos y co-
mas. Los tamainos de las submatrices deben de ser coherentes.

3.5.3. DIRECCIONAMIENTO DE VECTORES Y MATRICES A PARTIR DE VECTORES

Los elementos de un vector x se pueden direccionar a partir de los de otro vector v. En este caso,
x(v) equivale al vector x(v(1)), x(v(2)), ... Considérese el siguiente ejemplo:

>> v=[1 3 4]
v =
1 3 4
>> x=rand (1, 6)
x =
0.5899 0.4987 0.7351 0.9231 0.1449 0.9719
>> x(v)
ans =
0.5899 0.7351 0.9231

Capitulo 3: Operaciones con matrices y vectores pagina 35

De forma anéloga, los elementos de una matriz A pueden direccionarse a partir de los elementos de
dos vectores f y ¢. Véase por ejemplo:

>> f=[2 4]; c=[1 2];
>> A=magic (4)

A =
16 2 3 13
5 11 10 8
9 7 6 12
4 14 15 1
>> A(f,c)
ans =
5 11
4 14

El siguiente ejemplo —continuacion del anterior— permite comprobar cémo los elementos de una
matriz se pueden direccionar con un sélo indice, considerando que las columnas de la matriz estan
una a continuacion de otra formando un vector:

>> f£f=[1 3 5 7];

>> A(f), A(5), A(6)

ans =
16 9 2 7

Mas adelante se verd que esta forma de extraer elementos de un vector y/o de una matriz tiene
abundantes aplicaciones, por ejemplo la de modificar selectivamente esos elementos.

3.5.4. OPERADOR DOS PUNTOS (:)

Este operador es muy importante en MATLAB y puede usarse de varias formas. Se sugiere al lector
que practique mucho sobre los ejemplos contenidos en este apartado, introduciendo todas las modi-
ficaciones que se le ocurran y haciendo pruebas abundantes (jProbar es la mejor forma de apren-
der!).

Para empezar, definase un vector x con el siguiente comando:

>> x=1:10
x:
1 2 3 4 5 6 7 8 9 10

En cierta forma se podria decir que el operador (:) representa un rango: en este caso, los numeros
enteros entre el 1 y el 10. Por defecto el incremento es 1, pero este operador puede también utilizar-
se con otros valores enteros y reales, positivos o negativos. En este caso el incremento va entre el
valor inferior y el superior, en las formas que se muestran a continuacion:
>> x=1:2:10
x =
1 3 5 7 9
>> x=1:1.5:10
x =
1.0000 2.5000 4.0000 5.5000 7.0000 8.5000 10.0000
>> x=10:-1:1
x =
10 9 8 7 6 5 4 3 2 1

Puede verse que, por defecto, este operador produce vectores fila. Si se desea obtener un vector
columna basta trasponer el resultado. El siguiente ejemplo genera una tabla de funciones seno y

Aprenda Matlab 7.0 como si estuviera en Primero pagina 36

coseno. Ejecutese y obsérvese el resultado (recuérdese que con (;) después de un comando el resul-
tado no aparece en pantalla).

>> x=[0.0:pi/50:2*pi]"';

>> y=sin(x); z=cos(x);

>> [x y z]

El operador dos puntos (:) es ain mas util y potente —y también més complicado— con matrices. A
continuacion se va a definir una matriz A de tamafio 6x6 y después se realizaran diversas operacio-
nes sobre ella con el operador (:).

>> A=magic (6)

A =
35 1 6 26 19 24

3 32 7 21 23 25

31 9 2 22 27 20

8 28 33 17 10 15

30 5 34 12 14 16

4 36 29 13 18 11

Recuérdese que MATLAB accede a los elementos de una matriz por medio de los indices de fila y
de columna encerrados entre paréntesis y separados por una coma. Por ejemplo:
>> A(2,3)

ans =
7

El siguiente comando extrae los 4 primeros elementos de la 6° fila:

>> A(6, 1:4)
ans =
4 36 29 13

Los dos puntos aislados representan "todos los elementos". Por ejemplo, el siguiente comando ex-
trae todos los elementos de la 3* fila:
>> A(3, :)

ans =
31 9 2 22 27 20

Para acceder a la tltima fila o columna puede utilizarse la palabra end, en lugar del nimero corres-
pondiente. Por ejemplo, para extraer la sexta fila (la ultima) de la matriz:

>> A(end, :)
ans =

4

El siguiente comando extrae todos los elementos de las filas 3,4 y 5:

36

>> A(3:5,:)

ans =
31
8
30

Se pueden extraer conjuntos disjuntos de filas utilizando corchetes []. Por ejemplo, el siguiente
comando extrae las filas 1,2 y 5:

>> A([1 2 5],:)

ans =
35
3
30

9
28
5

1
32
5

29

2
33
34

6
y
34

13

22
17
12

26
21
12

18

27
10
14

19
23
14

11

20
15
16

24
25
16

Capitulo 3: Operaciones con matrices y vectores pagina 37

En los ejemplos anteriores se han extraido filas y no columnas por motivos del espacio ocupado por
el resultado en la hoja de papel. Es evidente que todo lo que se dice para filas vale para columnas y
viceversa: basta cambiar el orden de los indices.

El operador dos puntos (:) puede utilizarse en ambos lados del operador (=). Por ejemplo, a conti-
nuacion se va a definir una matriz identidad B de tamafio 6x6 y se van a reemplazar filas de B por

filas de A. Obsérvese que la siguiente secuencia de comandos sustituye las filas 2, 4 y 5 de B por las
filas 1,2y 3 de A,

>> B=eye (size (4)) ;
>> B([2 4 5],:)=A(1:3,:)

B =
1 0 0 0 0 0
35 1 6 26 19 24
0 0 1 0 0 0
3 32 7 21 23 25
31 9 2 22 27 20
0 0 0 0 0 1

Se pueden realizar operaciones aun mas complicadas, tales como la siguiente'’:
>> B=eye (size (4)) ;
>> B(1:2,:)=[0 1; 1 0]*B(1:2,:)

Como nuevo ejemplo, se va a ver la forma de invertir el orden de los elementos de un vector:

>> x=rand(1,5)
x =
0.9103 0.7622 0.2625 0.0475 0.7361
>> x=x(5:-1:1)
x =
0.7361 0.0475 0.2625 0.7622 0.9103

Obsérvese que por haber utilizado paréntesis —en vez de corchetes— los valores generados por el
operador (:) afectan a los indices del vector y no al valor de sus elementos.

Para invertir el orden de las columnas de una matriz se puede hacer lo siguiente:
>> A=magic(3)

A =
8 1 6
3 5 7
4 9 2

>> A(:,3:-1:1)

ans =
6 1 8
7 5 3
2 9 4

aunque hubiera sido mas facil utilizar la funcion fliplr(A), que es especifica para ello.

Finalmente, hay que decir que A(:) representa un vector columna con las columnas de A una detrés
de otra.

3.5.5. MATRIZ VACIA A[]. BORRADO DE FILAS O COLUMNAS

Para MATLAB una matriz definida sin ningun elemento entre los corchetes es una matriz que exis-
te, pero que esta vacia, o lo que es lo mismo que tiene dimension cero. Considérense los siguientes
ejemplos de aplicacion de las matrices vacias:

1% Se sustituyen las dos primeras filas de B por el producto de dichas filas por una matriz de permutacion.

Aprenda Matlab 7.0 como si estuviera en Primero pagina 38

>> A=magic(3)

A:
8 1 6
3 5 7
4 9 2

>> B=[]

B:

[]
>> exist (B)
ans =

[]
>> isempty (B)

ans =
1
>> A(:,3)=[]
A =
8 1
3 5
4 9

Las funciones exist() e isempty() permiten chequear si una variable existe y si estd vacia. En el ul-
timo ejemplo se ha eliminado la 3* columna de A asignandole la matriz vacia.

3.5.6. DEFINICION DE VECTORES Y MATRICES A PARTIR DE UN FICHERO

MATLAB acepta como entrada un fichero nombre.m (siempre con extension .m) que contiene ins-
trucciones y/o funciones. Dicho fichero se llama desde la linea de comandos tecleando simplemente
su nombre, sin la extension. A su vez, un fichero *.m puede llamar a otros ficheros *.m, e incluso
puede llamarse a si mismo (funciones recursivas). Las variables definidas dentro de un fichero de
comandos *.m que se ejecuta desde la linea de comandos son variables del espacio de trabajo base,
esto es, pueden ser accedidas desde fuera de dicho fichero; no sucede lo mismo si el fichero *.m
corresponde a una funcién. Si un fichero de comandos se llama desde una funcion, las variables que
se crean pertenecen al espacio de trabajo de dicha funcion.

Como ejemplo se puede crear un fichero llamado unidad.m que construya una matriz unidad de
tamafio 3x3 llamada U33 en un directorio llamado c:\matlab. Este fichero deberd contener la linea
siguiente:

U33=eye (3)
Desde MATLAB lldamese al comando unidad y obsérvese el resultado. Entre otras razones, es muy
importante utilizar ficheros de comandos para poder utilizar el Debugger y para evitar teclear mu-
chas veces los mismos datos, sentencias o expresiones.

3.5.7. DEFINICION DE VECTORES Y MATRICES MEDIANTE FUNCIONES Y DECLARACIONES

También se pueden definir las matrices y vectores por medio de funciones de libreria (las que se
veran en la siguiente seccion) y de funciones programadas por el usuario (que también se veran
mas adelante).

3.6. Operadores relacionales

El lenguaje de programacion de MATLAB dispone de los siguientes operadores relacionales:

< menor que
> mayor que
<= menor o igual que

>= mayor o igual que

Capitulo 3: Operaciones con matrices y vectores pagina 39

= igual que
~= distinto que'’

Obsérvese que, salvo el tltimo de ellos, coinciden con los correspondientes operadores relacionales
de C. Sin embargo, ésta es una coincidencia mas bien formal. En MATLAB los operadores relacio-
nales pueden aplicarse a vectores y matrices, y eso hace que tengan un significado especial.

Al igual que en C, si una comparacion se cumple el resultado es 1 (#rue), mientras que si no se
cumple es 0 (false). Reciprocamente, cualquier valor distinto de cero es considerado como true y el
cero equivale a false. La diferencia con C esta en que cuando los operadores relacionales de MA-
TLAB se aplican a dos matrices o vectores del mismo tamafo, la comparacion se realiza elemento
a elemento, y el resultado es otra matriz de unos y ceros del mismo tamaiio, que recoge el resulta-
do de cada comparacion entre elementos. Considérese el siguiente ejemplo como ilustracion de lo
que se acaba de decir:

>> A=[1 2;0 3]; B=[4 2;1 5];

>> A==
ans =
0 1
0 0
>> A~=B
ans =
1 0
1 1

3.7. Operadores logicos

Los operadores 16gicos de MATLAB son los siguientes:

& and (funcion equivalente: and(A,B)). Se evallian siempre ambos operandos, y el
resultado es #rue s6lo si ambos son true.
&& and breve: si el primer operando es false ya no se evalua el segundo, pues el resul-

tado final ya no puede ser més que false.

| or (funcion equivalente: or(A,B)). Se evaltian siempre ambos operandos, y el re-
sultado es false s6lo si ambos son false.

I or breve: si el primer operando es #rue ya no se evalua el segundo, pues el resulta-
do final no puede ser mas que true.

~ negacion logica (funcidon equivalente: not(A))

xor(A,B) realiza un "or exclusivo", es decir, devuelve 0 en el caso en que ambos sean 1 6
ambos sean 0.

Los operadores 16gicos se combinan con los relacionales para poder comprobar el cumplimiento de
condiciones multiples. Mas adelante se veran otros ejemplos y ciertas funciones de las que dispone
MATLAB para facilitar la aplicacion de estos operadores a vectores y matrices.

Los operadores logicos breves (&&) y (||) se utilizan para simplificar las operaciones de compara-
cion evitando operaciones innecesarias, pero también para evitar ciertos errores que se producirian
en caso de evaluar incondicionalmente el segundo argumento. Considérese por ejemplo la siguiente
sentencia, que evita una division por cero:

r = (b~=0) && (a/b>0);

' El caracter (~) se obtiene en los PCs pulsando sucesivamente las teclas 1, 2 y 6 manteniendo Alf pulsada.

Aprenda Matlab 7.0 como si estuviera en Primero pagina 40

4. FUNCIONES DE LIBRERIA

MATLAB tiene un gran nimero de funciones incorporadas. Algunas son funciones intrinsecas,
esto es, funciones incorporadas en el propio codigo ejecutable del programa. Estas funciones son
particularmente rapidas y eficientes. Existen ademas funciones definidas en ficheros *.m y *.mex"’
que vienen con el propio programa o que han sido aportadas por usuarios del mismo. Estas funcio-

nes extienden en gran manera las posibilidades del programa.

MATLAB dispone también de ficheros *.p, que son los ficheros *.m pre-compilados con la funcion
pcode. Se veran mas adelante.

Recuérdese que para que MATLAB encuentre una determinada funcion de usuario el correspon-
diente fichero-M debe estar en el directorio actual o en uno de los directorios del search path.

4.1. Caracteristicas generales de las funciones de MATLAB

El concepto de funcion en MATLAB es semejante al de C y al de otros lenguajes de programacion,
aunque con algunas diferencias importantes. Al igual que en C, una funcion tiene nombre, valor de
retorno y argumentos. Una funcion se llama utilizando su nombre en una expresion o utilizandolo
como un comando mas. Las funciones se pueden definir en ficheros de texto *.m en la forma que se
vera mas adelante. Considérense los siguientes ejemplos de llamada a funciones:

>> [maximo, posmax] = max(x);
>> r = sqrt(x"2+y"2) + eps;
>> a = cos(alfa) - sin(alfa);

donde se han utilizado algunas funciones matematicas bien conocidas como el calculo del valor
maximo, el seno, el coseno y la raiz cuadrada. Los nombres de las funciones se han puesto en negri-
ta. Los argumentos de cada funcion van a continuacion del nombre entre paréntesis (y separados
por comas si hay mas de uno). Los valores de retorno son el resultado de la funcion y sustituyen a
¢ésta en la expresion donde la funcién aparece.

Una diferencia importante con otros lenguajes es que en MATLAB las funciones pueden tener valo-
res de retorno matriciales multiples (ya se vera que pueden recogerse en variables ad hoc todos o
solo parte de estos valores de retorno), como en el primero de los ejemplos anteriores. En este caso
se calcula el elemento de maximo valor en un vector, y se devuelven dos valores: el valor madximo y
la posicion que ocupa en el vector. Obsérvese que los 2 valores de retorno se recogen entre corche-
tes, separados por comas.

Una caracteristica de MATLAB es que las funciones que no tienen argumentos no llevan paréntesis,
por lo que a simple vista no siempre son faciles de distinguir de las simples variables. En la segunda
linea de los ejemplos anteriores, eps es una funcion sin argumentos, que devuelve la diferencia entre
1.0 y el nimero de coma flotante inmediatamente superior. En lo sucesivo el nombre de la funcién
ird seguido de paréntesis si interesa resaltar que la funcién espera que se le pase uno o mas argu-
mentos.

Los nombres de las funciones de MATLAB no son palabras reservadas del lenguaje. Es posible
crear una variable llamada sin o cos, que ocultan las funciones correspondientes. Para poder acceder
a las funciones hay que eliminar (clear) las variables del mismo nombre que las ocultan, o bien
haber definido previamente una referencia a funcion (function handle). Las referencias a funcion
se estudiaran en el apartado 6.4, a partir de la pagina 72.

MATLAB permite que una funcion tenga un nizmero variable de argumentos y valores de retorno,
determinado sélo en tiempo de ejecucion. Mas adelante se verd como se hace esto.

12" Los ficheros *.mex son ficheros de codigo ejecutable.

Capitulo 4: Funciones de libreria pagina 41

MATLAB tiene diversos tipos de funciones. A continuaciéon se enumeran los tipos de funciones
mas importantes, clasificadas segin su finalidad:

1.- Funciones matematicas elementales.

2.- Funciones especiales.

3.- Funciones matriciales elementales.

4.- Funciones matriciales especificas.

5.- Funciones para la descomposicion y/o factorizacion de matrices.
6.- Funciones para andlisis estadistico de datos.

7.- Funciones para andlisis de polinomios.

8.- Funciones para integracion de ecuaciones diferenciales ordinarias.
9.- Resolucion de ecuaciones no-lineales y optimizacion.

10.- Integraciéon numérica.

11.- Funciones para procesamiento de sefial.

A continuacion se enumeran algunas caracteristicas generales de todas las funciones de MATLAB:

13 . . .,
— Los argumentos actuales” de estas funciones pueden ser expresiones y también llamadas a
otra funcion.

— Las funciones de MATLAB nunca devuelven modificadas las variables que se pasan como
argumentos, a no ser que se incluyan también como valores de retorno. Si el usuario las modi-
fica dentro de la funcidn, previamente se sacan copias de esas variables (se modifican las co-
pias, no las variables originales). Se podria decir que los argumentos de las funciones de MA-
TLAB siempre se pasan por valor, nunca por referencia.

— MATLAB admite valores de retorno matriciales multiples. Por ejemplo, en el comando:
>> [V, D] = eig(a)
la funcion eig() calcula los valores y vectores propios de la matriz cuadrada A. Los vectores

propios se devuelven como columnas de la matriz V, mientras que los valores propios son los
elementos de la matriz diagonal D. En los ejemplos siguientes:

>> [xmax, imax] = max(x)
>> xmax = max (x)
puede verse que la misma funcién max() puede ser llamada recogiendo dos valores de retorno

(el maximo elemento de un vector y la posicion que ocupa) o un sélo valor de retorno (el
maximo elemento).

— Las operaciones de suma y/o resta de una matriz con un escalar consisten en sumar y/o restar
el escalar a todos los elementos de la matriz.

— Recuérdese que tecleando help nombre_funcion se obtiene de inmediato informacion sobre la
funcién de ese nombre. En el Help Desk aparecen enlaces a “Functions - By Cathegory” y
“Functions — Alphabetical List’, en donde aparecen relaciones completas de las funciones
disponibles en MATLAB.

4.2. Equivalencia entre comandos y funciones

Existe una equivalencia entre las funciones y los comandos con argumentos de MATLAB. Asi, un
comando en la forma,

>> comando argl arg2

" Los argumentos actuales son los que se utilizan en la llamada de la funcion

Aprenda Matlab 7.0 como si estuviera en Primero pagina 42

es equivalente a una funcion con el mismo nombre que el comando a la que los argumentos se le
pasan como cadenas de caracteres,

>> comando('argl', 'arg2')

Esta dualidad entre comandos y funciones es sobre todo ttil en programacién, porque permite
“construir’” los argumentos con las operaciones propias de las cadenas de caracteres.

4.3. Funciones matematicas elementales que operan de modo escalar

Estas funciones, que comprenden las funciones matematicas trascendentales y otras funciones basi-
cas, cuando se aplican a una matriz actiian sobre cada elemento de la matriz como si se tratase de un
escalar. Por tanto, se aplican de la misma forma a escalares, vectores y matrices. Algunas de las
funciones de este grupo son las siguientes:

sin(X) seno

cos(X) cOseno

tan(x) tangente

asin(x) arco seno

acos(X) arco coseno

atan(x) arco tangente (devuelve un angulo entre -1/2 y +1/2)

atan2(x) arco tangente (devuelve un dngulo entre - y +7); se le pasan 2 argumentos,
proporcionales al seno y al coseno

sinh(x) seno hiperbdlico

cosh(x) coseno hiperbolico

tanh(x) tangente hiperbolica

asinh(x) arco seno hiperbolico

acosh(x) arco coseno hiperbdlico

atanh(x) arco tangente hiperbodlica

log(x) logaritmo natural

log10(x) logaritmo decimal

exp(x) funcién exponencial

sqrt(x) raiz cuadrada

sign(x) devuelve -1 s1 <0, 0 si =0y 1 si >0. Aplicada a un nimero complejo, devuelve
un vector unitario en la misma direccién

rem(Xx,y) resto de la division (2 argumentos que no tienen que ser enteros)

mod(x,y) similar a rem (Ver diferencias con el Help)

round(x) redondeo hacia el entero mas proximo

fix(x) redondea hacia el entero mas proximo a 0

floor(x) valor entero mas proximo hacia -oo

ceil(x) valor entero mas proximo hacia +oo

gcd(x) maximo comun divisor

lem(x) minimo comun multiplo

real(x) partes reales

imag(x) partes imaginarias

abs(x) valores absolutos

angle(x) angulos de fase

Capitulo 4: Funciones de libreria pagina 43

4.4. Funciones que actuan sobre vectores
Las siguientes funciones soélo actiian sobre vectores (no sobre matrices, ni sobre escalares):

[xm,im]=max(x) maximo elemento de un vector. Devuelve el valor mdximo xm y la posi-
cion que ocupa im

min(x) minimo elemento de un vector. Devuelve el valor minimo y la posicion
que ocupa

sum(x) suma de los elementos de un vector

cumsum(x) devuelve el vector suma acumulativa de los elementos de un vector (cada
elemento del resultado es una suma de elementos del original)

mean(x) valor medio de los elementos de un vector

std(x) desviacion tipica

prod(x) producto de los elementos de un vector

cumprod(x) devuelve el vector producto acumulativo de los elementos de un vector

[y,i]=sort(x) ordenacion de menor a mayor de los elementos de un vector x. Devuelve el

vector ordenado y, y un vector i con las posiciones iniciales en x de los
elementos en el vector ordenado y.

En realidad estas funciones se pueden aplicar también a matrices, pero en ese caso se aplican por
separado a cada columna de la matriz, dando como valor de retorno un vector resultado de aplicar
la funcion a cada columna de la matriz considerada como vector. Si estas funciones se quieren apli-
car a las filas de la matriz basta aplicar dichas funciones a la matriz traspuesta.

4.5. Funciones que actiian sobre matrices

Las siguientes funciones exigen que el/los argumento/s sean matrices. En este grupo aparecen algu-
nas de las funciones mas utiles y potentes de MATLAB. Se clasificaran en varios subgrupos:

4.5.1. FUNCIONES MATRICIALES ELEMENTALES:

B=A' calcula la traspuesta (conjugada) de la matriz A

B=A' calcula la traspuesta (sin conjugar) de la matriz A

v = poly(A) devuelve un vector v con los coeficientes del polinomio caracteristico de la
matriz cuadrada A

t = trace(A) devuelve la traza t (suma de los elementos de la diagonal) de una matriz
cuadrada A

[m,n] = size(A) devuelve el nimero de filas m y de columnas n de una matriz rectangular A

n = size(A) devuelve el tamano de una matriz cuadrada A

nf=size(A,1) devuelve el nimero de filas de A
nc =size(A,2) devuelve el nimero de columnas de A

4.5.2. FUNCIONES MATRICIALES ESPECIALES

Las funciones exp(), sqrt() y log() se aplican elemento a elemento a las matrices y/o vectores que se
les pasan como argumentos. Existen otras funciones similares que tienen también sentido cuando se
aplican a una matriz como una unica entidad. Estas funciones son las siguientes (se distinguen por-
que llevan una "m" adicional en el nombre):

expm(A) si A=XDX", expm(A) = X*diag(exp(diag(D)))*X"
sqrtm(A) devuelve una matriz que multiplicada por si misma da la matriz A
logm() es la funcidn reciproca de expm(A)

Aunque no pertenece a esta familia de funciones, se puede considerar que el operador potencia (")
estd emparentado con ellas. Asi, es posible decir que:

Aprenda Matlab 7.0 como si estuviera en Primero pagina 44

A™n

esta definida si A es cuadrada y n un nimero real. Si n es entero, el re-
sultado se calcula por multiplicaciones sucesivas. Si n es real, el resul-
tado se calcula como: A*n=X*D."n*X" siendo [X,D]=eig(A)

4.5.3. FUNCIONES DE FACTORIZACION Y/O DESCOMPOSICION MATRICIAL

A su vez este grupo de funciones se puede subdividir en 4 subgrupos:

— Funciones basadas en la factorizacion triangular (eliminacioén de Gauss):

[L,U] = lu(A)
B = inv(A)
d = det(A)

E =rref(A)

[E,xc] =rref(A)

U = chol(A)

¢ =rcond(A)

descomposicion de Crout (A = LU) de una matriz. La matriz L es una
permutacién de una matriz triangular inferior (dicha permutacion es conse-
cuencia del pivotamiento por columnas utilizado en la factorizacion)
calcula la inversa de A. Equivale a B=inv(U)*inv(L)

devuelve el determinante d de la matriz cuadrada A. Equivale a
d=det(L)*det(U)

reduccion a forma de escalon (mediante la eliminacion de Gauss con pivo-
tamiento por columnas, haciendo ceros también encima de los pivots) de
una matriz rectangular A

reduccion a forma de escalon con un vector xe que da informacion sobre
una posible base del espacio de columnas de A

descomposicion de Cholesky de matriz simétrica y positivo-definida. Sélo
se utiliza la diagonal y la parte triangular superior de A. El resultado es una
matriz triangular superior tal que A = U'*U

devuelve una estimacion del reciproco de la condicion numérica de la ma-
triz A basada en la norma-1. Si el resultado es proximo a 1 la matriz A esta
bien condicionada; si es proximo a 0 no lo esta.

— Funciones basadas en el calculo de valores y vectores propios:

[X,D] = eig(A)

[X,D] = eig(A,B)

valores propios (diagonal de D) y vectores propios (columnas de X) de una
matriz cuadrada A. Con frecuencia el resultado es complejo (si A no es
simétrica)

valores propios (diagonal de D) y vectores propios (columnas de X) de dos
matrices cuadradas A y B (Ax = ABx). Los vectores propios estan normali-
zados de modo que X'*B*X=I. Cuando A es simétrica y B es simétrica 'y
definida-positiva se puede utilizar [X,D] = eig(A,B,'chol").

— Funciones basadas en la descomposicion QR:

[Q.R]=qr(A)

[Q.R] =qr(A,0)

[Q.R,E]=qr(A)

B = null(A)

descomposicion QR de una matriz rectangular. Se utiliza para sistemas con
mas ecuaciones que incognitas. Q es una matriz ortogonal, es decir, es
cuadrada aunque A no lo sea (m>n). No se garantiza que los elementos di-
agonales de R sean positivos, lo cual crea dificultades en algunos proble-
mas (esa factorizacion no coincide con la de Gram-Schmidt).

similar a la anterior, pero con Q del mismo tamafo que A, es decir, sin
completar una base ortonormal cuando m>n.

factorizacion QR con pivotamiento por columnas. La matriz E es una ma-
triz de permutacion tal que A*E=Q*R. La matriz E se determina de modo
que los elementos de abs(diag(R)) son decrecientes.

devuelve una base ortonormal del subespacio nulo (kernel, o conjunto de
vectores X tales que Ax = 0) de la matriz rectangular A, calculada mediante
la descomposicion de valores singulares. Las columnas de B son ortonor-
males: B'"*B=I.

Capitulo 4: Funciones de libreria pagina 45

B =null(A,'r") devuelve una base del subespaco nulo de A calculada a partir de la forma
de escalon reducida. Las columnas de B no son ortonormales y se obtienen
alternativamente dando valor cero a todas las variables libres excepto a una
a la que se da valor unidad.

Q = orth(A) las columnas de Q son una base ortonormal del espacio de columnas de A.
El nimero de columnas de Q es el rango de A.

— Funciones basadas en la descomposicion de valores singulares

[U,D,V] =svd(A) descomposicion de valor singular de una matriz rectangular (A=U*D*V").
U y V son matrices ortonormales. D es diagonal mxn (mismo tamafio que
A) y contiene los valores singulares.

B = pinv(A) calcula la pseudo-inversa de una matriz rectangular A.

r =rank(A) calcula el rango r de una matriz rectangular A.

nor = norm(A) calcula la norma-2 de una matriz (el mayor valor singular).

nor = norm(A,2) lo mismo que la anterior.

nor = normest(A) calcula de forma aproximada la norma-2 con menos operaciones aritméti-
cas que la funcién norm.

¢ =cond(A) condicion numérica sub-2 de la matriz A. Es el cociente entre el maximo y
el minimo valor singular. La condicion numérica da una idea de los errores
que se obtienen al resolver un sistema de ecuaciones lineales con dicha
matriz: su logaritmo indica el niimero de cifras significativas que se pier-
den. Si A es grande el célculo es laborioso.

c =condest(A) estimacion por defecto de la condicion numérica de A con la norma-1. Esta
funcion es mucho més econémica que cond.

— Calculo del rango, normas y condicion numérica:

Existen varias formas de realizar estos calculos, con distintos niveles de esfuerzo de céalculo y
de precision en el resultado.

El rango se calcula implicitamente (sin que el usuario lo pida) al ejecutar las funciones
rref(A), orth(A), null(A) y pinv(A). Con rref(A) el rango se calcula como el nimero de filas
diferentes de cero; con orth(A) y null(A) —basadas ambas en la descomposicion QR— el rango
es el nimero de columnas del resultado (o n menos el nimero de columnas del resultado).
Con pinv(A) se utiliza la descomposicion de valor singular, que es el método mas fiable y mas
caro en tiempo de cpu. La funcidon rank(A) esta basada en pinv(A4).

Normas de matrices:

norm(A) norma-2, es decir, maximo valor singular de A, max(svd(A)).

normest(A) calcula una estimacion o aproximacion de la norma-2. Util para matrices
grandes en las que norm(A) necesita demasiado tiempo

norm(A,2) lo mismo que norm(A).

norm(A,1) norma-1 de A, maxima suma de valores absolutos por columnas, es decir:
max(sum(abs((A)))).

norm(A,inf) norma-o de A, maxima suma de valores absolutos por filas, es decir:
max(sum(abs((A')))).

Normas de vectores:

norm(x,p) norma-p, es decir sum(abs(x)"p)(1/p).

norm(X) norma-2 6 norma euclidea; equivale al modulo o norm(x,2).

norm(X,inf) norma-oo, es decir max(abs(x)).

norm(x,1) norma-1, es decir sum(abs(x)).

Aprenda Matlab 7.0 como si estuviera en Primero pagina 46

4.5.4. FUNCION LINSOLVE()

La funcion linsolve es la forma maés eficiente de que dispone MATLAB para resolver sistemas de
ecuaciones lineales. A diferencia del operador barra invertida \, esta funcion no trata de averiguar
las caracteristicas de la matriz que permitan hacer una resolucion mas eficiente: se fia de lo que le
dice el usuario. Si éste se equivoca, se obtendra un resultado incorrecto sin ningiin mensaje de error.
Las formas generales de la funcion linsolve para resolver Ax=b son las siguientes:

X = linsolve (A, Db)

x = linsolve (A,b,opts)

Obviamente, si b es una matriz de segundos miembros, x serd una mariz de soluciones con el mis-
mo n° de columnas. La primera forma de esta funcion utiliza la factorizaciéon LU con pivotamiento
parcial si la matriz A es cuadrada, y la factorizacion QR también con pivotamiento por columnas si
no lo es. La funcion linsolve da un warning si la matriz A es cuadrada y estd mlas condicionada, o
si es rectangular y de rango deficiente. Estos warnings se suprimen si se recoge un segundo valor de
retorno r, que representa el inverso de la condicion numérica si A es cuadrada o el rango si no lo es:

[x,r] = linsolve (A,Db)

El argumento opcional opts representa una estructura por medio de la cual el programador propor-
ciona informacion sobre las caracteristicas de la matriz.. Los campos de esta estructura se pueden
poner a true o a false, y son los siguientes: LT (triangular inferior), UT (triangular superior),
UHESS (forma de Hessenberg superior), SYM (simétrica), POSDEF (definida positiva), RECT
(rectangular general) y TRANSA (se desea resolver A’x=b, en lugar de Ax =b). Obviamente, no
todas estas caracteristicas son compatibles entre si; las que lo son se indican en la Tabla siguiente:

Tabla 1. Posibles campos de la esructura opts compatibles entre si.

LT UT UHESS | SYM | POSDEF | RECT | TRANSA
true false false false false true/false | true/false
false true false false false true/false | true/false
false false true false false false true/false
false false false true true false true/false
false false false false false true/false | true/false

En la Tabla 1 se observa que, en la actual version de MATLAB, s6lo se admiten matrices simétricas
que son al mismo tiempo definidas positivas. Para concluir este apartado, considérense los ejemplos
siguientes:

>> opts.LT=true; x=linsolve(L,b,opts);

>> clear opts; opts.SYM=true; opts.POSDEF=true; x=linsolve (A,b,opts);

Obsérvese que, antes de realizar una nueva ejecucion se han borrado las opciones utilizadas en la
ejecucion anterior.

4.6. Mas sobre operadores relacionales con vectores y matrices

Cuando alguno de los operadores relacionales vistos previamente (<, >, <=, >= == y ~=) actua en-
tre dos matrices (vectores) del mismo tamaio, el resultado es otra matriz (vector) de ese mismo
tamafio conteniendo unos y ceros, segun los resultados de cada comparacion entre elementos hayan
sido true o false, respectivamente.

Por ejemplo, supdngase que se define una matriz magic A de tamafio 3x3 y a continuacion se forma
una matriz binaria M basada en la condicion de que los elementos de A sean mayores que 4 (MA-

Capitulo 4: Funciones de libreria pagina 47

TLAB convierte este cuatro en una matriz de cuatros de modo automatico). Obsérvese con atencion
el resultado:

>> A=magic (3)

A =
8 1 6
3 5 7
4 9 2

>> M=A>4

M =
1 0 1
0 1 1
0 1 0

De ordinario, las matrices "binarias" que se obtienen de la aplicacion de los operadores relacionales
no se almacenan en memoria ni se asignan a variables, sino que se procesan sobre la marcha. MA-
TLAB dispone de varias funciones para ello. Recuérdese que cualquier valor distinto de cero equi-
vale a true, mientras que un valor cero equivale a false. Algunas de estas funciones son:

any(x) funcion vectorial; chequea si alguno de los elementos del vector x cumple una de-
terminada condicion (en este caso ser distinto de cero). Devuelve un uno 6 un cero

any(A) se aplica por separado a cada columna de la matriz A. El resultado es un vector de
unos y ceros

all(x) funcion vectorial; chequea si todos los elementos del vector x cumplen una condi-
cion. Devuelve un uno 6 un cero

all(A) se aplica por separado a cada columna de la matriz A. El resultado es un vector de
unos y ceros

find(x) busca indices correspondientes a elementos de vectores que cumplen una determi-

nada condicion. El resultado es un vector con los indices de los elementos que
cumplen la condicion

find(A) cuando esta funcion se aplica a una matriz la considera como un vector con una
columna detras de otra, de la 1* a la ultima.

A continuacion se veran algunos ejemplos de utilizacion de estas funciones.

>> A=magic (3)

A =
8 1 6
3 5 7
4 9 2

>> m=find (A>4)

m =

O ~J o o

Ahora se van a sustituir los elementos que cumplen la condicién anterior por valores de 10. Obsér-
vese como se hace y qué resultado se obtiene:

>> A(m)=10*ones (size(m))

A =
10 1 10
3 10 10
4 10 2

donde ha sido necesario convertir el 10 en un vector del mismo tamafio que m. Para chequear si hay
algin elemento de un determinado valor —por ejemplo 3— puede hacerse lo siguiente:

Aprenda Matlab 7.0 como si estuviera en Primero pagina 48

>> any (A==3)

ans =
1 0 0
>> any (ans)
ans =
1

mientras que para comprobar que todos los elementos de A son mayores que cero:

>> all(all(a))
ans =
1

En este caso no ha hecho falta utilizar el operador relacional porque cualquier elemento distinto de
cero equivale a true.

La funcion isequal(A, B) devuelve uno si las matrices son idénticas y cero si no lo son.

4.7. Otras funciones que actuan sobre vectores y matrices

Las siguientes funciones pueden actuar sobre vectores y matrices, y sirven para chequear ciertas
condiciones:

exist('var') comprueba si el nombre var existe como variable, funcion, directorio, fichero,

etc.

isnan(A) chequea si hay valores NaN en A, devolviendo una matriz de unos y ceros del
mismo tamafo que A.

isinf(A) chequea si hay valores Inf'en A, devolviendo una matriz de unos y ceros del

mismo tamafio que A.
isfinite(A) chequea si los valores de A son finitos.
isempty(A) chequea si un vector o matriz estd vacio o tiene tamafio nulo.

ischar() chequea si una variable es una cadena de caracteres (string).
isglobal() chequea si una variable es global.
issparse() chequea si una matriz es dispersa (sparse, es decir, con un gran numero de

elementos cero).

A continuacion se presentan algunos ejemplos de uso de estas funciones en combinacion con otras
vistas previamente. Se define un vector x con un NalV, que se elimina en la forma:

>> x=[1 2 3 4 0/0 6]
Warning: Divide by zero
x =
1 2 3 4 NaN 6
>> i=find(isnan(x))
i =
5
>> x=x(find(~isnan(x)))
x =
1 2 3 4 6

Otras posibles formas de eliminarlo serian las siguientes:

>> x=x(~isnan (x))
>> x(isnan(x))=[]

La siguiente sentencia elimina las filas de una matriz que contienen algin Na/V:
>> A(any(isnan(d) '), :)=[]

Capitulo 4: Funciones de libreria pagina 49

4.8. Determinacion de la fecha y la hora

MATLAB dispone de funciones que dan informacién sobre la fecha y la hora actual (la del reloj
del ordenador). Las funciones mas importantes relacionadas con la fecha y la hora son las siguien-
tes.
clock devuelve un vector fila de seis elementos que representan el afio, el mes, ¢l dia,
la hora, los minutos y los segundos, segin el reloj interno del computador. Los
cinco primeros son valores enteros, pero la cifra correspondiente a los segun-
dos contiene informacion hasta las milésimas de segundo.
now devuelve un numero (serial date number) que contiene toda la informacion de
la fecha y hora actual. Se utiliza como argumento de otras funciones.
date devuelve la fecha actual como cadena de caracteres
(por ejemplo: 24-Aug-2004).
datestr(t) convierte el serial date number t en cadena de caracteres con el dia, mes, afio,
hora, minutos y segundos. Ver en los manuales on-line los formatos de cadena
admitidos.
datenum() convierte una cadena (‘mes-dia-aio') o un conjunto de seis nimeros (afo, mes,
dia, horas, minutos, segundos) en serial date number.
datevec() convierte serial date numbers o cadenas de caracteres en el vector de seis ele-
mentos que representa la fecha y la hora.
calendar() devuelve una matriz 6x7 con el calendario del mes actual, o del mes y afio que
se especifique como argumento.
weekday(t) devuelve el dia de la semana para un serial date number t.

4.9. Funciones para calculos con polinomios
Para MATLAB un polinomio se puede definir mediante un vector de coeficientes. Por ejemplo, el
polinomio:
x'—8x*+6x-10=0
se puede representar mediante el vector [1, 0, -8, 6, -10]. MATLAB puede realizar diversas opera-

ciones sobre €1, como por ejemplo evaluarlo para un determinado valor de x (funcién polyval()) y
calcular las raices (funcion roots()):

>> pol=[1 0 -8 6 -10]

pol =
1 0 -8 6 -10
>> roots (pol)
ans =
-3.2800
2.6748

0.3026 + 1.02381i

0.3026 - 1.02381i
>> polyval (pol,1)
ans =

-11

Para calcular producto de polinomios MATLAB utiliza una funcién llamada conv() (de producto de
convolucion). En el siguiente ejemplo se va a ver como se multiplica un polinomio de segundo gra-
do por otro de tercer grado:

>> poll=[1l -2 4]

poll =
1 -2 4

Aprenda Matlab 7.0 como si estuviera en Primero pagina 50

>> pol2=[1 0 3 -4]

pol2z =
1 0 3 -4
>> pol3=conv (poll,pol2)
pol3 =
1 -2 7 -10 20 -16

Para dividir polinomios existe otra funcion llamada deconv(). Las funciones orientadas al calculo
con polinomios son las siguientes:

poly(A) polinomio caracteristico de la matriz A
roots(pol) raices del polinomio pol
polyval(pol,x) evaluacion del polinomio pol para el valor de x. Si x es un vector, pol se

evalua para cada elemento de x

polyvalm(polLA) evaluacion del polinomio pol de la matriz A

conv(pl,p2) producto de convolucion de dos polinomios p1 'y p2

[c,r]=deconv(p,q) division del polinomio p por el polinomio q. En ¢ se devuelve el cociente y
en r el resto de la division

residue(pl,p2) descompone el cociente entre pl y p2 en suma de fracciones simples (ver
>>help residue)

polyder(pol) calcula la derivada de un polinomio

polyder(pl,p2) calcula la derivada de producto de polinomios

polyfit(x,y,n) calcula los coeficientes de un polinomio p(x) de grado n que se ajusta a los

datos p(x(i)) ~= y(i), en el sentido de minimo error cuadratico medio.
interpl(xp,yp,x) calcula el valor interpolado para la abscisa x a partir de un conjunto de
puntos dado por los vectores xp e yp.
interpl(xp,yp,X,'m') como la anterior, pero permitiendo especificar también el método de
interpolacion. La cadena de caracteres m admite los valores 'nearest', 'li-
near', 'spline', 'pchip’, 'cubic' y 'vScubic'.

Capitulo 5: Otros tipos de datos de MATLAB pagina 51

5. OTROS TIPOS DE DATOS DE MATLAB

En los capitulos precedentes se ha visto la “especialidad” de MATLAB: trabajar con vectores y
matrices. En este capitulo se va a ver que MATLAB puede también trabajar con otros tipos de da-
tos:

1. Conjuntos o cadenas de caracteres, fundamentales en cualquier lenguaje de programacion.
2. Hipermatrices, o matrices de mas de dos dimensiones.

3. Estructuras, o agrupaciones bajo un mismo nombre de datos de naturaleza diferente.

4

Vectores o matrices de celdas (cell arrays), que son vectores o matrices cuyos elementos pue-
den ser cualquier otro tipo de dato.

5. Matrices dispersas o matrices dispersas, que son matrices que pueden ser de muy gran tamafio
con la mayor parte de sus elementos cero.

5.1. Cadenas de caracteres

MATLAB trabaja también con cadenas de caracteres, con ciertas semejanzas y también diferencias
respecto a C/C++ y Java. A continuacion se explica lo mas importante del manejo de cadenas de
caracteres en MATLAB. Las funciones para cadenas de caracteres estdn en el sub-directorio tool-
box\matlab\strfun del directorio en que esté instalado MATLAB.

Los caracteres de una cadena se almacenan en un vector, con un caracter por elemento. Cada carac-
ter ocupa dos bytes. Las cadenas de caracteres van entre apdstrofos o comillas simples, como por
ejemplo: 'cadena'. Si la cadena debe contener comillas, éstas se representan por un doble caracter
comilla, de modo que se pueden distinguir facilmente del principio y final de la cadena. Por ejem-
plo, para escribir la cadena ni 'idea’ se escribiria 'ni'"idea'".

Una matriz de caracteres es una matriz cuyos elementos son caracteres, o bien una matriz cuyas
filas son cadenas de caracteres. Todas las filas de una matriz de caracteres deben tener el mismo
numero de elementos. Si es preciso, las cadenas (filas) mas cortas se completan con blancos.

A continuacion se pueden ver algunos ejemplos y practicar con ellos:

>> c='cadena'
c =
cadena
>> size(c) % dimensiones del array
ans =
1 6
>> double(c) % convierte en numeros ASCII cada caracter
ans =
99 97 100 101 110 97
>> char (abs(c)) % convierte numeros ASCII en caracteres
ans =
cadena
>> cc=char('mas', 'madera’) % convierte dos cadenas en una matriz
cc =
mas
madera
>> size(cc) % se han afiadido tres espacios a 'mas'
ans =
2 6

Las funciones mas importantes para manejo de cadenas de caracteres son las siguientes:

double(c) convierte en numeros ASCII cada caracter
char(v) convierte un vector de nimeros v en una cadena de caracteres

Aprenda Matlab 7.0 como si estuviera en Primero pagina 52

char(cl,c2)
deblank(c)
disp(c)
ischar(c)
isletter()

isspace()

stremp(cl,c2)

strcmpi(cl,c2)

crea una matriz de caracteres, completando con blancos las cadenas mas cor-
tas

elimina los blancos al final de una cadena de caracteres

imprime el texto contenido en la variable ¢

detecta si una variable es una cadena de caracteres

detecta si un caracter es una letra del alfabeto. Si se le pasa un vector o matriz
de caracteres devuelve un vector o matriz de unos y ceros

detecta si un caracter es un espacio en blanco. Si se le pasa un vector o matriz
de caracteres devuelve un vector o matriz de unos y ceros

comparacion de cadenas. Si las cadenas son iguales devuelve un uno, y si no
lo son, devuelve un cero (funciona de modo diferente que la correspondiente
funcién de C)

igual que stremp(cl,c2), pero ignorando la diferencia entre mayusculas y mi-
nusculas

strncmp(cl,c2,n) compara los n primeros caracteres de dos cadenas

cl==c2

s=[s,' y mas'|
findstr(c1,c2)

strmatch(cc,c)

compara dos cadenas caracter a caracter. Devuelve un vector o matriz de unos
y ceros

concatena cadenas, afiadiendo la segunda a continuacion de la primera
devuelve un vector con las posiciones iniciales de todas las veces en que la
cadena mas corta aparece en la mas larga

devuelve los indices de todos los elementos de la matriz de caracteres (o vec-
tor de celdas) c¢, que empiezan por la cadena ¢

strrep(c1,c2,c3) sustituye la cadena ¢2 por €3, cada vez que ¢2 es encontrada en cl

[p,r]=strtok(t)

int2str(v)
num2str(x,n)

str2double(str)

ve=cellstr(cc)

sprintf

separa las palabras de una cadena de caracteres t. Devuelve la primera palabra
p vy el resto de la cadena r

convierte un nimero entero en cadena de caracteres

convierte un nimero real x en su expresion por medio de una cadena de ca-
racteres, con cuatro cifras decimales por defecto (pueden especificarse mas
cifras, con un argumento opcional n)

convierte una cadena de caracteres representando un niimero real en el ntime-
ro real correspondiente

convierte una matriz de caracteres cc en un vector de celdas ve, eliminando
los blancos adicionales al final de cada cadena. La funcién char() realiza las
conversiones opuestas

convierte valores numéricos en cadenas de caracteres, de acuerdo con las re-
glas y formatos de conversion del lenguaje C. Esta es la funcion mas general
para este tipo de conversion y se vera con mas detalle en la Seccion 6.6.2.

Con las funciones anteriores se dispone en MATLAB de una amplia gama de posibilidades para
trabajar con cadenas de caracteres.

A continuacion se pueden ver algunos ejemplos:

>> num2str (pi) % el resultado es una cadena de caracteres, no un numero

ans =
3.142

>> num2str(pi, 8)

ans =
3.1415927

Es habitual convertir los valores numéricos en cadenas de caracteres para poder imprimirlos como
titulos en los dibujos o graficos. Véase el siguiente ejemplo:

Capitulo 5: Otros tipos de datos de MATLAB pagina 53

>> fahr=70; grd=(fahr-32)/1.8;
>> title(['Temperatura ambiente: ', num2str(grd),' grados centigrados'])

5.2. Hipermatrices (arrays de mas de dos dimensiones)

MATLAB permite trabajar con hipermatrices, es decir
con matrices de mas de dos dimensiones (Figura 27). A(1,1.k)

Una posible aplicacion es almacenar con un Uinico nom-
bre distintas matrices del mismo tamano (resulta una

hipermatriz de 3 dimensiones). Los elementos de una

hipermatriz pueden ser niimeros, caracteres, estructuras,
y vectores o matrices de celdas.

El tercer subindice representa la tercera dimension: la

“profundidad” de la hipermatriz.

5.2.1. DEFINICION DE HIPERMATRICES

Las funciones para trabajar con estas hipermatrices estan
en el sub-directorio toolbox\matlab\datatypes. Las fun- —
ciones que operan con matrices de mas de dos dimen- i
siones son analogas a las funciones vistas previamente,
aunque con algunas diferencias. Por ejemplo, las siguien-
tes sentencias generan, en dos pasos, una matriz de 2x3x2:

>> AA(:,:,1)=[1 2 3; 4 5 6] % matriz inicial

AA =
1 2 3
4 5 6
>> AA(:,:,2)=[2 3 4; 5 6 7] % se aflade una segunda matriz
AA(:,:,1) =
1 2 3
4 5 6
AA(:,:,2) =
2 3 4
5 6 7

5.2.2. FUNCIONES QUE TRABAJAN CON HIPERMATRICES

Figura 27. Hipermatriz de tres dimensiones.

Algunas funciones de MATLAB para generar matrices admiten mas de dos subindices y pueden ser
utilizadas para generar hipermatrices. Entre ellas estan rand(), randn(), zeros() y ones(). Por ejem-

plo, véase la siguiente sentencia y su resultado:
>> BB=randn(2,3,2)

BB(:,:,1) =
-0.4326 0.1253 -1.1465
-1.6656 0.2877 1.1909

BB(:,:,2) =
1.1892 0.3273 -0.1867

-0.0376 0.1746 0.7258

La funcion cat() permite concatenar matrices segun las distintas “dimensiones”, como puede verse

en el siguiente ejemplo:

>> A=zeros(2,3); B=ones(2,3);

Aprenda Matlab 7.0 como si estuviera en Primero pagina 54

>> cat(1l,A,B)

ans =
0 0 0
0 0 0
1 1 1
1 1 1
>> cat(2,A,B)
ans =
0 0 0 1 1 1
0 0 0 1 1 1
>> cat(3,A,B)
ans(:,:,1) =
0 0 0
0 0 0
ans(:,:,2) =
1 1 1
1 1 1

Las siguientes funciones de MATLAB se pueden emplear también con hipermatrices:

size() devuelve tres o mas valores (el n° de elementos en cada dimension)

ndims() devuelve el nimero de dimensiones

squeeze() elimina las dimensiones que son igual a uno

reshape() distribuye el mismo niimero de elementos en una matriz con distinta forma o

con distintas dimensiones
permute(A,v) permuta las dimensiones de A segun los indices del vector v
ipermute(A,v) realiza la permutacion inversa

Respecto al resto de las funciones de MATLAB, se pueden establecer las siguientes reglas para su
aplicacion a hipermatrices:

1. Todas las funciones de MATLAB que operan sobre escalares (sin(), cos(), etc.) se aplican so-
bre hipermatrices elemento a elemento (igual que sobre vectores y matrices). Las operaciones
con escalares también se aplican de la misma manera.

2. Las funciones que operan sobre vectores (sum(), max(), etc.) se aplican a matrices e hiperma-
trices segun la primera dimension, resultando un array de una dimensién inferior.

3. Las funciones matriciales propias del Algebra Lineal (det(), inv(), etc.) no se pueden aplicar a
hipermatrices. Para poderlas aplicar hay que extraer primero las matrices correspondientes
(por ejemplo, con el operador dos puntos (:)).

5.3. Estructuras

Una estructura (struct) es una agrupacion de datos de tipo diferente bajo un mismo nombre. Estos
datos se llaman miembros (members) o campos (fields). Una estructura es un nuevo tipo de dato,
del que luego se pueden crear muchas variables (ebjetos o instances). Por ejemplo, la estructura
alumno puede contener los campos nombre (una cadena de caracteres) y carnet (un nimero).

5.3.1. CREACION DE ESTRUCTURAS

En MATLAB la estructura alumno se crea creando un objeto de dicha estructura. A diferencia de
otros lenguajes de programacion, no hace falta definir previamente el modelo o patréon de la estruc-
tura. Una posible forma de hacerlo es crear uno a uno los distintos campos, como en el ejemplo si-
guiente:

>> alu.nombre='Miguel'

alu =
nombre: 'Miguel'’

Capitulo 5: Otros tipos de datos de MATLAB pagina 55

>> alu.carnet=75482

alu =
nombre: 'Miguel'
carnet: 75482
>> alu
alu =

nombre: 'Miguel'
carnet: 75482

Se accede a los miembros o campos de una estructura por medio del operador punto (.), que une el
nombre de la estructura y el nombre del campo (por ejemplo: alu.nombre).
También puede crearse la estructura por medio de la funcion struct(), como por ejemplo,

>> al = struct('nombre', 'Ignacio', 'carnet',6 76589)
al =

nombre: 'Ignacio'

carnet: 76589

Los nombres de los campos se pasan a la funcion struct() entre apoéstrofos ('), seguidos del valor
que se les quiere dar. Este valor puede ser la cadena vacia (") o la matriz vacia ([]).
Pueden crearse vectores y matrices (e hipermatrices) de estructuras. Por ejemplo, la sentencia,

>> alum(10) = struct('nombre', 'Ignacio', 'carnet',6 76589)
crea un vector de 10 elementos cada uno de los cuales es una estructura tipo alumno. Sélo el ele-
mento 10 del vector es inicializado con los argumentos de la funcion struct(); el resto de los cam-

pos se inicializan con una cadena vacia o una matriz vacia'. Para dar valor a los campos de los
elementos restantes se puede utilizar un bucle for con sentencias del tipo:

>> alum(i) .nombre='Noelia', alum(i) .carnet=77524;
MATLAB permite afiadir un nuevo campo a una estructura en cualquier momento. La siguiente

sentencia afiade el campo edad a todos los elementos del vector alum, aunque solo se da valor al
campo del elemento 5,

>> alum(5) .edad=18;

Para ver el campo edad en los 10 elementos del vector puede teclearse el comando:

>> alum.edad

5.3.2. FUNCIONES PARA OPERAR CON ESTRUCTURAS

Las estructuras de MATLAB disponen de funciones que facilitan su uso. Algunas de estas funcio-
nes son las siguientes:

fieldnames() devuelve un vector de celdas con cadenas de caracteres que recogen los
nombres de los campos de una estructura

isfield(ST,s) permite saber si la cadena s es un campo de una estructura ST

isstruct(ST) permite saber si ST es 0 no una estructura

rmfield(ST,s) elimina el campo s de la estructura ST

getfield(ST,s) devuelve el valor del campo especificado. Si la estructura es un array hay
que pasarle los indices como cell array (entre llaves {}) como segundo ar-
gumento

setfield(ST,s,v) da el valor v al campo s de la estructura ST. Si la estructura es un array, hay
que pasarle los indices como cell array (entre llaves {}) como segundo ar-
gumento

4" Esta forma de crear arrays de estructuras da error si la estructura ha sido previamente declarada global.

Aprenda Matlab 7.0 como si estuviera en Primero pagina 56

MATLAB permite definir estructuras anidadas, es decir una estructura con campos que sean otras
estructuras. Para acceder a los campos de la estructura mas interna se utiliza dos veces el operador
punto (.), como puede verse en el siguiente ejemplo, en el que la estructura clase contiene un campo
que es un vector alum de alumnos,

>> clase=struct('curso', 'primero', 'grupo','A’', .
'alum', struct('nombre','Juan', 'edad',K 19))

clase =
curso: 'primero'
grupo: 'A'

alum: [1x1 struct]
>> clase.alum(2) .nombre='Maria’';
>> clase.alum(2) .edad=17;
>> clase.alum(2)

ans =
nombre: 'Maria'
edad: 17
>> clase.alum(1l)
ans =
nombre: 'Juan'
edad: 19

Las estructuras se generalizan con las clases y los objetos, que no se veran en este manual.

5.4. Vectores o matrices de celdas (Cell Arrays)

Un vector (matriz o hipermatriz) de celdas es un vector (matriz o hipermatriz) cuyos elementos son
cada uno de ellos una variable de tipo cualquiera. En un array ordinario todos sus elementos son
numeros o cadenas de caracteres. Sin embargo, en un array de celdas, el primer elemento puede ser
un numero; el segundo una matriz; el tercero una cadena de caracteres; el cuarto una estructura, etc.

5.4.1. CREACION DE VECTORES Y MATRICES DE CELDAS

Obsérvese por ejemplo como se crea, utilizando laves {}, el siguiente vector de celdas,

>> ve(l)={[1 2 3]}
ve =
[1x3 double]
>> vc(2)={'mi nombre'}
ve =
[1x3 double] 'mi nombre'
>> ve(3)={rand(3,3)}
ve =
[1x3 double] 'mi nombre' [3x3 double]

Es importante que el nombre del vector de celdas ve no haya sido utilizado previamente para otra
variable (si asi fuera, se obtendria un error). Si es preciso se utiliza el comando clear.

Obsérvese que para crear un vector de celdas los valores asignados a cada elemento se han definido
entre llaves {...}.

Otra nomenclatura alternativa y similar, que también utiliza llaves, es la que se muestra a continua-
cion:
>> vb{1}=[1 2 3]

vb =

[1x3 double]
>> vb{2}="'mi nombre'
vb =

[1x3 double] 'mi nombre'

Capitulo 5: Otros tipos de datos de MATLAB pagina 57

>> vb{3}=rand(3,3)
vb =
[1x3 double] 'mi nombre' [3x3 double]
y también es posible crear el vector de celdas en una sola operacion en la forma,

{[1 2 3], 'mi nombre', rand(3,3)}

vee
vce =
[1x3 double] 'mi nombre' [3x3 double]

5.4.2. FUNCIONES PARA TRABAJAR CON VECTORES Y MATRICES DE CELDAS
MATLAB dispone de las siguientes funciones para trabajar con cell arrays:

cell(m,n) crea un cell array vacio de m filas y n columnas
celldisp(ca) muestra el contenido de todas las celdas de ca

cellplot(ca) muestra una representacion grafica de las distintas celdas
iscell(ca) indica si ca es un vector de celdas

num2cell() convierte un array numérico en un cell array

cell2struct() convierte un cell array en una estructura (ver Seccion 5.4.3)
struct2cell() convierte una estructura en un cell array (ver Seccion 5.4.3)

5.4.3. CONVERSION ENTRE ESTRUCTURAS Y VECTORES DE CELDAS

El siguiente ejemplo convierte el cell array vee creado previamente en una estructura S7 cuyos
campos se pasan como argumentos a la funcion cell2struct(). El tercer argumento (un 2) indica que
es la segunda dimension del cell array (las columnas) la que va a dar origen a los campos de la es-
tructura. Con posterioridad la estructura ST se convierte en un nuevo cell array llamado vbb,

>> ST=cell2struct(vb, {'vector', 'cadena', 'matriz'},2)

ST =

vector: [1 2 3]

cadena: 'mi nombre'

matriz: [3x3 double]
>> vbb = struct2cell (ST)' % hay que transponer para obtener una fila
vbb =

[1x3 double] 'mi nombre' [3x3 double]

La gran ventaja de las estructuras y los arrays de celdas es que proporcionan una gran flexibilidad
para el almacenamiento de los mas diversos tipos de informacion. El inconveniente es que se pierde
parte de la eficiencia que MATLAB tiene trabajando con vectores y matrices.

5.5. Matrices dispersas (sparse)

Las matrices dispersas o sparse son matrices de un gran tamafio con la mayor parte de sus elemen-
tos cero. Operar sobre este tipo de matrices con los métodos convencionales lleva a obtener tiempos
de calculo prohibitivos. Por esta razon se han desarrollado técnicas especiales para este tipo de ma-
trices. En ingenieria es muy frecuente encontrar aplicaciones en las que aparecen matrices sparse.
MATLAB dispone de numerosas funciones para trabajar con estas matrices.

Las matrices dispersas se almacenan de una forma especial: solamente se guardan en memoria los
elementos distintos de cero, junto con la posicidon que ocupan en la matriz. MATLAB usa 3 arrays
para matrices reales sparse con nnz elementos distintos de cero:

Aprenda Matlab 7.0 como si estuviera en Primero pagina 58

1. Un array con todos los elementos

distintos de cero (nnz elementos) ki) =

File Edit Tools Window Help

2. Un array con los indices de filade [D@EB& x A A/ 220
los elementos distintos de cero (nnz

elementos) i % :
3. Un array con punteros a la posicion i , ﬁ%“ .
del primer elemento de cada co- m- . “‘h& A
lumna (n elementos) 150 R il \x&
En total se requiere una memoria de i L g B
(nnz*8+(nnz+n)*4) bytes. La Figura 28 280 1 R k
muestra un ejemplo de matriz dispersa 30}
que viene con MATLAB (se puede car- Ll d
gar con load west0479). Esta matriz
tiene 479 filas y columnas. De los i » 5
229441 elementos s6lo 1887 son distin- sl . . -. \j"’.v: 1
tos de cero. Se comprende que se pue- 0 100 200 300 400
den conseguir grandes ahorros de me- filil
moria y de tiempo de calculo alma- Figura 28. Ejemplo de matriz dispersa (west0479).

cenando y operando so6lo con los ele-
mentos distintos de cero.

A continuacion se va a mostrar con un ejemplo mas pequeiio coémo guarda MATLAB estas matri-
ces. Primero se creara una matriz 5x5 llena y luego se convertira en dispersa.

>> a=[1, 0, O, -1, O; O, 2, O, O, 1; O, O, 1, 1, 0; O, 2, O, 1, O; -3, 0, O, O, 2]
A =

1 0 0 -1 0
0 2 0 0 1
0 0 1 1 0
0 2 0 1 0
-3 0 0 0 2
>> S=sparse (A)
S =
(1,1) 1
(5,1) -3
(2,2) 2
(4,2) 2
(3,3) 1
(1,4) -1
(3,4) 1
(4,4) 1
(2,5) 1
(5,5) 2

Puede observarse como MATLAB muestra las matrices dispersas: primero los dos indices, de filas
y de columnas, entre paréntesis y después el valor del elemento. Los elementos se almacenan por
columnas y por eso se guarda la posicion en que empieza cada columna.

5.5.1. FUNCIONES PARA CREAR MATRICES DISPERSAS (DIRECTORIO SPARFUN)

Las siguientes funciones permiten crear matrices dispersas. Casi todas estas funciones tienen mu-
chas posibles formas de ser utilizadas, con distintos argumentos y valores de retorno. Se recomienda
ver el Help de MATLAB para tener una informacién mas detallada.

speye(m,n) Matriz identidad dispersa de tamafio mxn con unos en la diagonal
sprand(m,n) Matriz aleatoria dispersa con distribucion uniforme

Capitulo 5: Otros tipos de datos de MATLAB pagina 59

sprandn(m,n) Matriz aleatoria dispersa con distribucion normal

sprandsym(n) Matriz aleatoria simétrica

spdiags(A) Matriz dispersa a partir de las diagonales de otra matriz

sparse(m,n) Crea una matriz dispersa de tamafio m*n con todos los elementos cero
sparse(A) Crea una matriz dispersa a partir de una matriz llena

sparse(i,j,val,m,n) Construye una matriz dispersa a partir de: i vector de indices de fila, j vec-
tor de indices de columna, val vector de valores, m nimero de filas, n na-
mero de columnas, y un 6° argumento que permite definir el maximo nnz
(por defecto en el tamafio de val) por si se quieren afiadir después mas

elementos
full(S) Convierte una matriz dispersa en una matriz llena
find(S) Encuentra los indices de los elementos distintos de cero y los devuelve

como si la matriz fuera un vector (por columnas).
[1,j,val]=find(S) Devuelve indices de fila, de columna y valores de los elementos, a partir de
los cuales se puede volver a crear la matriz

spy(S) Representa en una figura los elementos distintos de cero de la matriz
nnz(S) Devuelve el nimero de elementos distintos de cero

nonzeros(S) Devuelve un vector lleno que contiene los elementos distintos de cero
nzmax(S) Memoria reservada para elementos distintos de cero

spones(S) Reemplazar los elementos distintos de cero por unos
spalloc(m,n,nzmax) Reserva espacio para una matriz dispersa m>n

issparse(S) Devuelve true si el argumento es una matriz dispersa

5.5.2. OPERACIONES CON MATRICES DISPERSAS

Las matrices dispersas son mas “delicadas” que las matrices llenas. En concreto, son muy sensibles
a la ordenacion de sus filas y columnas. El problema no es tanto la matriz dispersa en si, como las
matrices —también dispersas- que resultan de las factorizaciones LU o de Cholesky necesarias para
resolver sistemas de ecuaciones, calcular valores y vectores propios, etc. En estas factorizaciones
puede haber muchos elementos cero que dejan de serlo y esto es un grave problema para la eficien-
cia de los calculos. Reordenando las filas y columnas de una matriz dispersa se puede minimizar el
nimero de elementos que se hacen distintos de cero al factorizar (llenado o fill-in). MATLAB dis-
pone de dos formas principales de reordenacion: los métodos del minimo grado (minimum degree) y
de Cuthill-McKee inverso (reversed Cuthill-McKee). A continuacion se describen las funciones mas
importantes de MATLAB en esta categoria.

spfun('fun’, S) Aplica una funcioén a los elementos distintos de cero de la matriz S

p=colmmd(S) Devuelve el vector de permutaciones de columnas calculado con el método
del minimo grado (minimum degree). Para matrices no simétricas esta
permutacion tiende a producir factorizaciones LU mas dispersas.

p=symmmd(S) Devuelve el vector de permutaciones de filas y columnas (symmetric mi-
nimum degree permutation). Aplicando esta permutacion a las filas y co-
lumnas se obtienen factorizaciones de Cholesky mas dispersas.

p=symrcm(S) Obtiene un vector de permutaciones por el método de Cuthill-McKee in-
verso tal que, aplicado a filas y columnas de S, obtiene matrices con los
elementos agrupados alrededor de la diagonal principal (minima anchura
de banda). Se aplica a matrices simétricas y no simétricas.

Aprenda Matlab 7.0 como si estuviera en Primero pagina 60

p=colperm(S) Obtiene una permutacion de columnas que ordena las columnas en orden
de numero de ceros no decreciente. A veces se utiliza para ordenar antes
de aplicar la factorizacion LU. Si la matriz es simétrica la permutacion se
puede aplicar a filas y a columnas.

randperm(n) Calcula una permutacion aleatoria de los # primeros nimeros naturales

5.5.3. OPERACIONES DE ALGEBRA LINEAL CON MATRICES DISPERSAS

A continuacion se describen muy brevemente las funciones de MATLAB que pueden utilizarse para
operar con matrices dispersas. Algunas de estas funciones se llaman igual que las correspondientes
funciones para matrices llenas, y otras son especificas de matrices dispersas. Casi todas estas fun-
ciones tienen varias formas de utilizarse. Para mas detalles se sugiere recurrir al Help.

[L,U,P]=lu(S) Realiza la factorizacion LU

L=chol(S) Realiza la factorizacion de Cholesky

[Q,R]=qr(S) Realiza la factorizacion QR

[L,U]=luinc(A,tol) Realiza una factorizacion LU incompleta

L=cholinc(S) Calcula una factorizacion de Cholesky incompleta (Ver la Ayuda)

[V.D,FLAG] = eigs(S) Calcula algunos valores propios de una matriz cuadrada. Esta funcién
tiene muchas posibles formas: consultar la Ayuda

svds(S) Calcula algunos valores singulares de una matriz rectangular. Esta
funcion tiene muchas posibles formas: consultar la Ayuda

normest(S,tol) Estimacion de la norma-2 con una determinada tolerancia (por defecto
le-06)

condest(S) Estimacién de condicion numérica sub-1

sprank(S) Calcula el rango de una matriz dispersa

symbfact(S) Symbolic factorization analysis. Devuelve informacion sobre los ele-

mentos que se haran distintos de cero en la factorizacion de Cholesky,
sin llegar a realizar dicha factorizacion

Los sistemas de ecuaciones con matrices dispersas se pueden resolver con métodos directos, que
son variantes de la eliminacion gaussiana. El camino habitual de acceder a los métodos directos es a
través de los operadores / y \, igual que para matrices llenas.

También se pueden utilizar métodos iterativos, que tienen la ventaja de no cambiar ninglin elemento
de la matriz. Se trata de obtener soluciones aproximadas después de un ntimero finito de pasos.

Se llama factorizaciones “incompletas” a aquéllas que no calculan la factorizacion exacta sino una
aproximada, despreciando los elementos que se hacen distintos de cero pero tienen un valor peque-
fo. Aunque la factorizacion es incompleta y sélo aproximada, se puede hacer en mucho menos
tiempo y para ciertas finalidades es suficiente. Estas factorizaciones incompletas se utilizan por
ejemplo como pre-condicionadores de algunos métodos iterativos.

Las siguientes funciones son muy especializadas y aqui s6lo se van a citar sus nombres (en inglés,
tal como los utiliza MATLAB). Para mas informacion recurrir al Help y a la bibliografia especiali-
zada.

pcg() Resuelve un sistema de ecuaciones lineales por el método del Gradiente
Conjugado Pre-condicionado (Preconditioned Conjugate Gradients Met-
hod). La matriz debe ser simétrica y positivo-definida

bicg() BiConjugate Gradients Method. Similar al anterior para matrices cuadradas
que no son simétricas y positivo-definidas

bicgstab() BiConjugate Gradients Stabilized Method.

Capitulo 5: Otros tipos de datos de MATLAB pagina 61

cgs() Conjugate Gradients Squared Method

gmres() Generalized Minimum Residual Method

qmr() Quasi-Minimal Residual Method

spparms() Establece los parametros para las funciones que trabajan con matrices sparse
(set parameters for sparse matrix routines)

spaugment() Form least squares augmented system

5.5.4. REGLAS GENERALES PARA OPERAR CON MATRICES DISPERSAS

El criterio general para trabajar con matrices dispersas en MATLAB es que casi todas las operacio-
nes matriciales estdndar funcionan de la misma forma sobre matrices dispersas que sobre matrices
llenas. De todas formas, existen algunos criterios particulares que conviene conocer y que se enun-
cian a continuacion:

1. Las funciones que aceptan una matriz como argumento y devuelven un escalar o un vector
siempre devuelven un vector lleno, aunque el argumento sea disperso

2. Las funciones que aceptan como argumentos escalares o vectores y devuelven matrices devuel-
ven matrices llenas

3. Las funciones de un solo argumento que reciben una matriz y devuelven una matriz o vector
conservan el caracter del argumento (disperso o lleno). Ej: chol(), diag(), max(), sum()

4. Las funciones binarias devuelven resultados dispersos si ambos argumentos son dispersos. Si un
operando es lleno devuelven lleno, excepto si la operacion conserva los elementos cero y distin-
tos de cero (por ejemplo: .* y ./)

5. La concatenacioén de matrices con cat o corchetes [| produce resultados dispersos para opera-
ciones mixtas

6. Sub-indexado de matrices; S(i,j) a la derecha de una asignacion produce resultados dispersos,
mientras que a la izquierda de una asignacion (=) mantiene el tipo de almacenamiento de S.

5.5.5. PERMUTACIONES DE FILAS Y/O COLUMNAS EN MATRICES SPARSE

Para permutar las filas de una matriz se debe pre-multiplicar por una matriz de permutacion P, que
es una matriz que deriva de la matriz identidad I por permutacion de filas y/o columnas. Asi, el pro-
ducto P*S permuta filas de la matriz S, mientras que S*P' permuta columnas.

Un vector de permutacion p (que contiene una permutacion de los nimeros naturales /:n) actia
sobre las filas S(p,:) o columnas S(:,p). El vector de permutaciéon p es mas compacto y eficiente que
la matriz de permutacion P. Por eso casi siempre los resultados de permutaciones realizadas o a
realizar se dan como vector p (excepto en la factorizaciéon LU). Las sentencias siguientes ilustran la
relacion entre la matriz Py el vector p.

>> I = speye()D);
>> p=[2,1,5,4,3]

p:

2 1 5 4 3
P =I(p,:) % para calcular la matriz P a partir del vector p
P =

W g RN
<

O W NP

S S =

Aprenda Matlab 7.0 como si estuviera en Primero pagina 62

(P*(1l:n)"')' % para calcular el vector p a partir de la matriz P

o]
|

2 1 5 4 3

Puede comprobarse que la inversa de P es P'. La funcidn de reordenacion symrcm(A) tiende a mi-
nimizar la banda de la matriz agrupando los elementos junto a la diagonal, y symmd(A) minimiza el
fill-in o llenado de una matriz simétrica, mientras que colmmd(A) lo hace con una matriz no simé-
trica.

5.6. Clases y objetos

MATLAB dispone de herramientas necesarias para realizar una Programacion Orientada a Objetos
(POO) con muchas de las caracteristicas disponibles en otros lenguajes como C++ y Java. Las va-
riables miembro de una clase son los miembros de una estructura, considerada en el apartado 5.3, a
partir de la pagina 54. Las funciones miembro de la clase se definen en un directorio con el mismo
nombre de la clase precedido por el cardcter @. Dichas funciones pueden ser publicas y privadas. A
diferencia de C++ y Java, las funciones miembro deben recibir el objeto al que se aplican como uno
de los argumentos explicitos, y no mediante el operador punto (.). Existen también los conceptos de
herencia y polimorfismo.

En "Aprenda Matlab 7.0 como si estuviera en Segundo" se proporcionara (cuando esté disponible)
una introduccioén a la Programacion Orientada a Objetos con MATLAB 7.0. En la version online de
los manuales (formato *.PDF) se contiene una excelente explicacion sobre el tema, con numerosos
ejemplos.

Capitulo 6: Programacion de MATLAB pagina 63

6. PROGRAMACION DE MATLAB

Como ya se ha dicho varias veces —incluso con algin ejemplo- MATLAB es una aplicacion que se
puede programar muy facilmente. De todas formas, como lenguaje de programacion pronto vera
que no tiene tantas posibilidades como otros lenguajes (ni tan complicadas...). Se comenzara viendo
las bifurcaciones y bucles, y la lectura y escritura interactiva de variables, que son los elementos
basicos de cualquier programa de una cierta complejidad.

6.1. Bifurcaciones y bucles

MATLAB posee un lenguaje de programacion que —como cualquier otro lenguaje— dispone de sen-
tencias para realizar bifurcaciones y bucles. Las bifurcaciones permiten realizar una u otra opera-
cioén segiin se cumpla o no una determinada condicion. La Figura 29 muestra tres posibles formas
de bifurcacion.

v

true
Condicién 1

false false

Condicion —

false Bloque 1

true

true

Condicion 2
Sentencias Bloque 1 Bloque 2

Bloque 2

Bloque 3

Figura 29. Ejemplos graficos de bifurcaciones.

Los bucles permiten repetir las mismas o analogas operaciones sobre datos distintos. Mientras que
en C/C++/Java el "cuerpo" de estas sentencias se determinaba mediante llaves {...}, en MATLAB
se utiliza la palabra end con analoga finalidad. Existen también algunas otras diferencias de sin-
taxis.

Sentencias

true

Sentencias true

Y

Figura 30. Bucles con control al principio y al final.

La Figura 30 muestra dos posibles formas de bucle, con el control situado al principio o al final del
mismo. Si el control esta situado al comienzo del bucle es posible que las sentencias no se ejecuten
ninguna vez, por no haberse cumplido la condicidon cuando se llega al bucle por primera vez. Sin

Aprenda Matlab 7.0 como si estuviera en Primero pagina 64

embargo, si la condicion esta al final del bucle las sentencias se ejecutaran por lo menos una vez,
aunque la condicion no se cumpla. Muchos lenguajes de programacion disponen de bucles con con-
trol al principio (for y while en C/C++/Java) y al final (do ... while en C/C++/Java). En MATLAB
no hay bucles con control al final del bucle, es decir, no existe construccion analoga a do ... while.

Las bifurcaciones y bucles no sélo son utiles en la preparacion de programas o de ficheros *.m.
También se aplican con frecuencia en el uso interactivo de MATLAB, como se verd mas adelante
en algunos ejemplos.

6.1.1. SENTENCIA IF

En su forma mds simple, la sentencia if se escribe en la forma siguiente (obsérvese que —a diferen-
cia de C/C++/Java— la condicién no va entre paréntesis, aunque se pueden poner si se desea)':
if condicion

sentencias
end

Existe también la bifurcacion multiple, en la que pueden concatenarse tantas condiciones como se
desee, y que tiene la forma:
if condicionl
bloquel
elseif condicion2
bloque?2
elseif condicion3
bloque3

o

else % opcidn por defecto para cuando no se cumplan las condiciones 1,2,3
bloqued
end

donde la opcion por defecto else puede ser omitida: si no esta presente no se hace nada en caso de
que no se cumpla ninguna de las condiciones que se han chequeado.

Una observacion muy importante: la condicidon del if puede ser una condicion matricial, del tipo
A==B, donde A y B son matrices del mismo tamafio. Para que se considere que la condicion se
cumple, es necesario que sean iguales dos a dos todos los elementos de las matrices A 'y B (ai=bj,
1<i<m, 1<j<n). Basta que haya dos elementos a;; y b;; diferentes para que las matrices ya no sean
iguales, y por tanto las sentencias del if no se ejecuten. Andlogamente, una condicion en la forma
A~=B exige que todos los elementos sean diferentes dos a dos (aij#bij, 1<i<m, 1<j<n). Bastaria que
hubiera dos elementos a;; y b;; iguales para que la condicion no se cumpliese. En resumen:

if A=—=B exige que fodos los elementos sean iguales dos a dos
if A~=B exige que fodos los elementos sean diferentes dos a dos

Como se ha dicho, MATLAB dispone de funciones especiales para ayudar en el chequeo de condi-
ciones matriciales. Por ejemplo, la funcion isequal(A, B) devuelve un uno si las dos matrices son
idénticas y un cero en caso de que difieran en algo.

6.1.2. SENTENCIA SWITCH

La sentencia switch realiza una funcion analoga a un conjunto de if...elseif concatenados. Su forma
general es la siguiente:

> En los ejemplos siguientes las sentencias aparecen desplazadas hacia la derecha respecto al if, else o end. Esto se

hace asi para que el programa resulte mas legible, resultando mas facil ver donde empieza y termina la bifurcacion o
el bucle. Es muy recomendable seguir esta practica de programacion.

Capitulo 6: Programacion de MATLAB pagina 65

switch switch expresion
case case_exprl,

bloquel

case {case expr2, case_expr3, case expré4,...}
bloque?

otherwise, % opcidédn por defecto
bloque3

end

Al principio se evalla la switch_expresion, cuyo resultado debe ser un nimero escalar o una cadena
de caracteres. Este resultado se compara con las case_expr, y se ejecuta el bloque de sentencias que
corresponda con ese resultado. Si ninguno es igual a switch_expresion se ejecutan las sentencias
correspondientes a otherwise. Segin puede verse en el ejemplo anterior, es posible agrupar varias
condiciones dentro de unas llaves (constituyendo lo que se llama un cell array o vector de celdas,
explicado en el apartado 5.4); basta la igualdad con cualquier elemento del cell array para que se
ejecute ese bloque de sentencias. La “igualdad” debe entenderse en el sentido del operador de
igualdad (==) para escalares y la funcion stremp() para cadenas de caracteres). A diferencia de
C/C++/Java'®, en MATLAB s6lo se ejecuta uno de los bloques relacionado con un case.

6.1.3. SENTENCIA FOR

La sentencia for repite un conjunto de sentencias un numero predeterminado de veces. La sentencia
for de MATLAB es muy diferente y no tiene la generalidad de la sentencia for de C/C++/Java. La
siguiente construccion ejecuta sentencias con valores de i de 1 a n, variando de uno en uno.

for i=1:n

sentencias
end

o bien,

for i=vectorValores
sentencias
end

donde vectorValores es un vector con los distintos valores que tomara la variable i.

En el siguiente ejemplo se presenta el caso mas general para la variable del bucle (valor_inicial:
incremento: valor_final); el bucle se ejecuta por primera vez con i=n, y luego i se va reduciendo de
0.2 en 0.2 hasta que llega a ser menor que 1, en cuyo caso el bucle se termina:

for i=n:-0.2:1

sentencias
end

En el siguiente ejemplo se presenta una estructura correspondiente a dos bucles anidados. La varia-
ble j es la que varia mas rapidamente (por cada valor de i, j toma todos sus posibles valores):

for i=1:m
for j=1:n
sentencias
end
end

Una tltima forma de interés del bucle for es la siguiente (A es una matriz):

for i=A
sentencias
end

' En C se ejecuta el caso seleccionado y todos los siguientes, salvo que se utilice la sentencia break.

Aprenda Matlab 7.0 como si estuviera en Primero pagina 66

en la que la variable i es un vector que va tomando en cada iteracion el valor de una de las columnas
de A.

Cuando se introducen interactivamente en la linea de comandos, los bucles for se ejecutan s6lo des-
pués de introducir la sentencia end que los completa.

6.1.4. SENTENCIA WHILE

La estructura del bucle while es muy similar a la de C/C++/Java. Su sintaxis es la siguiente:

while condicion
sentencias
end

donde condicion puede ser una expresion vectorial o matricial. Las sentencias se siguen ejecutando
mientras haya elementos distintos de cero en condicion, es decir, mientras haya algin o algunos
elementos #rue. El bucle se termina cuando fodos los elementos de condicion son false (es decir,
cero).

6.1.5. SENTENCIA BREAK

Al igual que en C/C++/Java, la sentencia break hace que se termine la ejecucion del bucle for y/o
while mas interno de los que comprenden a dicha sentencia.

6.1.6. SENTENCIA CONTINUE

La sentencia continue hace que se pase inmediatamente a la siguiente iteracion del bucle for o whi-
le, saltando todas las sentencias que hay entre el continue y el fin del bucle en la iteracion actual.

6.1.7. SENTENCIAS 7TRY...CATCH...END

La construccion try...catch...end permite gestionar los errores que se pueden producir en tiempo de
ejecucion. Su forma es la siguiente:
try
sentenciasl
catch

sentencias?2
end

En el caso de que durante la ejecucion del bloque sentencias1 se produzca un error, el control de la
ejecucion se transfiere al bloque sentencias2. Si la ejecucion transcurriera normalmente, senten-
cias2 no se ejecutaria nunca. MATLAB dispone de una funcion lasterr que devuelve una cadena de
caracteres con el mensaje correspondiente al Gltimo error que se ha producido. En la forma las-
terr('’) pone a cero este contador de errores, y hace que la funcion lasterr devuelva la matriz vacia
[] hasta que se produzca un nuevo error.

6.2. Lecturay escritura interactiva de variables
Se vera a continuacioén una forma sencilla de leer variables desde teclado y escribir mensajes en la
pantalla del PC. Més adelante se consideraran otros modos mas generales —y complejos— de hacerlo.

6.2.1. FUNCION INPUT

La funcidén input permite imprimir un mensaje en la linea de comandos de MATLAB vy recuperar
como valor de retorno un valor numérico o el resultado de una expresion tecleada por el usuario.
Después de imprimir el mensaje, el programa espera que el usuario teclee el valor numérico o la
expresion. Cualquier expresion valida de MATLAB es aceptada por este comando. El usuario pue-

Capitulo 6: Programacion de MATLAB pagina 67

de teclear simplemente un vector o una matriz. En cualquier caso, la expresion introducida es eva-
luada con los valores actuales de las variables de MATLAB y el resultado se devuelve como valor
de retorno. Véase un ejemplo de uso de esta funcion:

>> n = input('Teclee el numero de ecuaciones')

Otra posible forma de esta funcion es la siguiente (obsérvese el parametro 's'):

>> nombre = input(';Cémo te llamas?','s')

En este caso el texto tecleado como respuesta se lee y se devuelve sin evaluar, con lo que se alma-
cena en la cadena nombre. Asi pues, en este caso, si se teclea una férmula, se almacena como texto
sin evaluarse.

6.2.2. FUNCION DISP

La funcién disp permite imprimir en pantalla un mensaje de texto o el valor de una matriz, pero sin
imprimir su nombre. En realidad, disp siempre imprime vectores y/o matrices: las cadenas de carac-
teres son un caso particular de vectores. Considérense los siguientes ejemplos de como se utiliza:

>> disp('El programa ha terminado')

>> A=rand(4,4)

>> disp(A)

Ejecutense las sentencias anteriores en MATLAB y obsérvese la diferencia entre las dos formas de
imprimir la matriz A.

6.3. Ficheros *.m

Los ficheros con extension (.m) son ficheros de texto sin formato (ficheros ASCII) que constituyen
el centro de la programacion en MATLAB. Ya se han utilizado en varias ocasiones. Estos ficheros
se crean y modifican con un editor de textos cualquiera. En el caso de MATLAB ejecutado en un
PC bajo Windows, 1o mejor es utilizar su propio editor de textos, que es también Debugger.

Existen dos tipos de ficheros *.m, los ficheros de comandos (1lamados scripts en inglés) y las fun-
ciones. Los primeros contienen simplemente un conjunto de comandos que se ejecutan sucesiva-
mente cuando se teclea el nombre del fichero en la linea de comandos de MATLAB o se incluye
dicho nombre en otro fichero *.m. Un fichero de comandos puede llamar a otros ficheros de co-
mandos. Si un fichero de comandos se llama desde de la linea de comandos de MATLAB, las va-
riables que crea pertenecen al espacio de trabajo base de MATLAB (recordar apartado 2.5.6), y
permanecen en ¢l cuando se termina la ejecucion de dicho fichero.

Las funciones permiten definir funciones enteramente analogas a las de MATLAB, con su nombre,
sus argumentos y sus valores de retorno. Los ficheros *.m que definen funciones permiten exten-
der las posibilidades de MATLAB; de hecho existen bibliotecas de ficheros *.m que se venden
(toolkits) o se distribuyen gratuitamente (a través de Infernet). Las funciones definidas en ficheros
*.m se caracterizan porque la primera linea (que no sea un comentario) comienza por la palabra
function, seguida por los valores de retorno (entre corchetes [| y separados por comas, si hay mas
de uno), el signo igual (=) y el nombre de la funcion, seguido de los argumentos (entre paréntesis y
separados por comas).

Recuérdese que un fichero *.m puede llamar a otros ficheros *.m, e incluso puede llamarse a si
mismo de forma recursiva. Los ficheros de comandos se pueden llamar también desde funciones, en
cuyo caso las variables que se crean pertenecen al espacio de trabajo de la funcion. El espacio de
trabajo de una funcidn es independiente del espacio de trabajo base y del espacio de trabajo de las
demas funciones. Esto implica por ejemplo que no puede haber colisiones entre nombres de varia-

Aprenda Matlab 7.0 como si estuviera en Primero pagina 68

bles: aunque varias funciones tengan una variable llamada A, en realidad se trata de variables com-
pletamente distintas (a no ser que A haya sido declarada como variable global).

A continuacion se vera con un poco mas de detalle ambos tipos de ficheros *.m.

6.3.1. FICHEROS DE COMANDOS (SCRIPTS)

Como ya se ha dicho, los ficheros de comandos o scripts son ficheros con un nombre tal como fi-
lel.m que contienen una sucesion de comandos analoga a la que se teclearia en el uso interactivo
del programa. Dichos comandos se ejecutan sucesivamente cuando se teclea el nombre del fichero
que los contiene (sin la extension), es decir cuando se teclea filel con el ejemplo considerado.
Cuando se ejecuta desde la linea de comandos, las variables creadas por filel pertenecen al espacio
de trabajo base de MATLAB. Por el contrario, si se ejecuta desde una funcion, las variables que
crea pertenecen al espacio de trabajo de la funcion (ver apartado 2.5.6, en la pagina 14).

En los ficheros de comandos conviene poner los puntos y coma (;) al final de cada sentencia, para
evitar una salida de resultados demasiado cuantiosa. Un fichero *.m puede llamar a otros ficheros
*.m, ¢ incluso se puede llamar a si mismo de modo recursivo. Sin embargo, no se puede hacer pro-
file (ver apartado 6.11, en la pagina 95) de un fichero de comandos: sdlo se puede hacer de las fun-
ciones.

Las variables definidas por los ficheros de comandos son variables del espacio de trabajo desde el
que se ejecuta el fichero, esto es variables con el mismo caracter que las que se crean interactiva-
mente en MATLAB si el fichero se ha ejecutado desde la linea de comandos. Al terminar la ejecu-
cion del script, dichas variables permanecen en memoria.

El comando echo hace que se impriman los comandos que estan en un script a medida que van
siendo ejecutados. Este comando tiene varias formas:

echo on activa el echo en todos los ficheros script

echo off desactiva el echo

echo file on donde 'file' es el nombre de un fichero de funcidn, activa el echo en esa funcidén
echo file off desactiva el echo en la funcion

echo file pasa de on a off y viceversa

echoonall activa el echo en todas las funciones

echo off all desactiva el echo de todas las funciones

Mencidn especial merece el fichero de comandos startup.m (ver apartado 2.7). Este fichero se eje-
cuta cada vez que se entra en MATLAB. En ¢l puede introducir todos aquellos comandos que le
interesa se ejecuten siempre al iniciar la sesion, por ejemplo format compact y los comandos nece-
sarios para modificar el path.

6.3.2. DEFINICION DE FUNCIONES

La primera linea de un fichero llamado name.m que define una funcion tiene la forma:

function [lista de valores de retorno] = name(lista de argumentos)

donde name es ¢l nombre de la funcion. Entre corchetes y separados por comas van los valores de
retorno (siempre que haya mas de uno), y entre paréntesis también separados por comas los argu-
mentos. Puede haber funciones sin valor de retorno y también sin argumentos. Recuérdese que los
argumentos son los datos de la funcion y los valores de retorno sus resultados. Si no hay valores
de retorno se omiten los corchetes y el signo igual (=); si s6lo hay un valor de retorno no hace falta
poner corchetes. Tampoco hace falta poner paréntesis si no hay argumentos.

Capitulo 6: Programacion de MATLAB pagina 69

Una diferencia importante con C/C++/Java es que en MATLAB una funciéon no puede modificar
nunca los argumentos que recibe, de cara al entorno que ha realizado la llamada. Los resultados de
una funcion de MATLAB se obtienen siempre a través de los valores de retorno, que pueden ser
multiples y matriciales. Tanto el nimero de argumentos como el de valores de retorno no tienen que
ser fijos, dependiendo de como el usuario llama a la funcién'”.

Las variables definidas dentro de una funcion son variables locales, en el sentido de que son inac-
cesibles desde otras partes del programa y en el de que no interfieren con variables del mismo nom-
bre definidas en otras funciones o partes del programa. Se puede decir que pertenecen al propio
espacio de trabajo de la funcion y no son vistas desde otros espacios de trabajo. Para que la funcion
tenga acceso a variables que no han sido pasadas como argumentos es necesario declarar dichas
variables como variables globales, tanto en el programa principal como en las distintas funciones
que deben acceder a su valor. Es frecuente utilizar el convenio de usar para las variables globales
nombres largos (mas de 5 letras) y con mayusculas.

Por razones de eficiencia, los argumentos que recibe una funcion de MATLAB no se copian a va-
riables locales si no son modificados por dicha funcién (en términos de C/C++ se diria que se pasan
por referencia). Esto tiene importantes consecuencias en términos de eficiencia y ahorro de tiempo
de calculo. Sin embargo, si dentro de la funcion se realizan modificaciones sobre los argumentos
recibidos, antes se sacan copias de dichos argumentos a variables locales y se modifican las copias
(diriase que en este caso los argumentos se pasan por valor).

Dentro de la funcidn, los valores de retorno deben ser calculados en algin momento (no hay senten-
cia return obligatoria, como en C/C++/Java). De todas formas, no hace falta calcular siempre todos
los posibles valores de retorno de la funcion, sino so6lo los que el usuario espera obtener en la sen-
tencia de llamada a la funcion. En cualquier funcidn existen dos variables definidas de modo auto-
matico, llamadas nargin y nargout, que representan respectivamente el nimero de argumentos y el
nimero de valores de retorno con los que la funcioén ha sido llamada. Dentro de la funcion, estas
variables pueden ser utilizadas como el programador desee.

La ejecucion de una funcion termina cuando se llega a su ultima sentencia ejecutable. Si se quiere
forzar el que una funcion termine de ejecutarse se puede utilizar la sentencia refurn, que devuelve
inmediatamente el control al entorno de llamada.

6.3.3. SENTENCIA RETURN

De ordinario las funciones devuelven el control después de que se ejecute la ultima de sus senten-
cias. La sentencia return, incluida dentro del cddigo de una funcién, hace que se devuelva inmedia-
tamente el control al programa que realizo la llamada.

6.3.4. FUNCIONES CON NUMERO VARIABLE DE ARGUMENTOS

Desde la version 5.0, MATLAB dispone de una nueva forma de pasar a una funcion un numero
variable de argumentos por medio de la variable varargin, que es un vector de celdas (ver apartado
5.4, en la pagina 56) que contiene tantos elementos como sean necesarios para poder recoger en
dichos elementos todos los argumentos que se hayan pasado en la llamada. No es necesario que
varargin sea el Ginico argumento, pero si debe ser el tltimo de los que haya, pues recoge todos los
argumentos a partir de una determinada posicion. Recuérdese que a los elementos de un cell array
se accede utilizando llaves {}, en lugar de paréntesis ().

7" Es un concepto distinto del de funciones sobrecargadas (funciones distintas con el mismo nombre y distintos argu-
mentos), utilizadas en C/C++/Java. En MATLAB una misma funcion puede ser llamada con mas o menos argumen-
tos y valores de retorno. También en C/C++ es posible tener un nimero variable de argumentos, aunque no de valo-
res de retorno.

Aprenda Matlab 7.0 como si estuviera en Primero pagina 70

De forma analoga, una funcién puede tener un nimero indeterminado de valores de retorno utili-
zando varargout, que es también un cell array que agrupa los ultimos valores de retorno de la fun-
cion. Puede haber otros valores de retorno, pero varargout debe ser el ultimo. El cell array varar-
gout se debe crear dentro de la funcién y hay que dar valor a sus elementos antes de salir de la fun-
cion. Recuérdese también que las variables nargin y nargout indican el nimero de argumentos y de
valores de retorno con que ha sido llamada la funcién. A continuacién se presenta un ejemplo senci-
llo: obsérvese el codigo de la siguiente funcion atan3:

function varargout=atan3 (varargin)
if nargin==
rad = atan(varargin{l});
elseif nargin==
rad = atan2 (varargin{l},varargin{2});
else
disp('Error: mas de dos argumentos')
return
end
varargout{l}=rad;
if nargout>1
varargout{2}=rad*180/pi;
end
MATLAB (y muchos otros lenguajes de programacion) dispone de dos funciones, llamadas atan y
atan2, para calcular el arco cuya tangente tiene un determinado valor. El resultado de dichas fun-
ciones esta expresado en radianes. La funcion atan recibe un tinico argumento, con lo cual el arco
que devuelve estd comprendido entre —nt/2 y +1/2 (entre —90° y 90°), porque por ejemplo un arco de
45° es indistinguible de otro de —135, si s6lo se conoce la tangente. La funcion atan2 recibe dos
argumentos, uno proporcional al seno del angulo y otro al coseno. En este caso ya se pueden distin-

guir los angulos en los cuatro cuadrantes, entre —n y 7 (entre —180° y 180°).

La funcion atan3 definida anteriormente puede recibir uno o dos argumentos: si recibe uno llama a
atan y si recibe dos llama a atan2 (si recibe mas da un mensaje de error). Ademas, atan3 puede
devolver uno o dos valores de retorno. Por ejemplo, si el usuario la llama en la forma:

>> a = atan3(1);

devuelve un valor de retorno que es el angulo en radianes, pero si se llama en la forma:
>> [a, b] = atan3(1,-1);

devuelve dos valores de retorno, uno con el angulo en radianes y otro en grados. Obsérvese como la
funcién atan3 utiliza los vectores de celdas varargin y varargout, asi como el nimero actual de
argumentos rargin con los que ha sido llamada.

6.3.5. HELP PARA LAS FUNCIONES DE USUARIO

También las funciones creadas por el usuario pueden tener su help, analogo al que tienen las pro-
pias funciones de MATLAB. Esto se consigue de la siguiente forma: las primeras lineas de comen-
tarios de cada fichero de funcion son muy importantes, pues permiten construir un help sobre esa
funcién. En otras palabras, cuando se teclea en la ventana de comandos de MATLAB:

>> help mi_func

el programa responde escribiendo las primeras lineas del fichero mi_func.m que comienzan por el
caracter (%), es decir, que son comentarios.

De estas lineas, tiene una importancia particular la primera linea de comentarios (llamada en oca-
siones linea H1). En ella hay que intentar poner la informacion mas relevante sobre esa funcion. La
razén es que existe una funcion, llamada lookfor que busca una determinada palabra en cada prime-
ra linea de comentario de todas las funciones *.m.

Capitulo 6: Programacion de MATLAB pagina 71

6.3.6. HELP DE DIRECTORIOS

MATLAB permite que los usuarios creen una ayuda general para todas las funciones que estan en
un determinado directorio. Para ello se debe crear en dicho directorio un fichero llamado con-
tents.m. A continuacion se muestra un fichero tipico contents.m correspondiente al directorio tool-
box\local de MATLAB:

Preferences.

o o

oe

Saved preferences files.

% startup - User startup M-file.

% finish - User finish M-file.

% matlabrc - Master startup M-file.
% pathdef - Search path defaults.
% docopt - Web browser defaults.
% printopt - Printer defaults.

oe

oe

Preference commands.
cedit - Set command line editor keys.
terminal - Set graphics terminal type.

oC oo o

oe

Configuration information.

% hostid - MATLAB server host identification number.
% license - License number.

% version - MATLAB version number.

% Utilities.

% userpath - User environment path.

oe

Copyright 1984-2002 The MathWorks, Inc.
$Revision: 1.14 $ $Date: 2002/06/07 21:45:05 $

oe

Compruébese que la informacion anterior es exactamente la que se imprime con el comando
>> help local

Si el fichero contents.m no existe, se listan las primeras lineas de comentarios (lineas H1) de todas
las funciones que haya en ese directorio. Para que el Help de directorios funcione correctamente
hace falta que ese directorio esté en el search path de MATLAB o que sea el directorio actual.

6.3.7. SUB-FUNCIONES

Tradicionalmente MATLAB obligaba a crear un fichero *.m diferente por cada funcion. El nombre
de la funcion debia coincidir con el nombre del fichero. A partir de la version 5.0 se introdujeron las
sub-funciones, que son funciones adicionales definidas en un mismo fichero *.m, con nombres di-
ferentes del nombre del fichero (y del nombre de la funcién principal) y que las sub-funciones soélo
pueden ser llamadas por las funciones contenidas en ese fichero, resultando “invisibles” para
otras funciones externas.

A continuacion se muestra un ejemplo contenido en un fichero llamado mi_fun.m:

function y=mi_fun(a,b)
y=subfunl (a,b) ;

function x=subfunl (y, z)
x=subfun2 (y, z) ;

function x=subfun2 (y, z)
x=y+z+2;

Aprenda Matlab 7.0 como si estuviera en Primero pagina 72

6.3.8. FUNCIONES PRIVADAS

Las funciones privadas (private) son funciones que no se pueden llamar desde cualquier otra fun-
cion, aunque se encuentren en el path o en el directorio actual. Sdlo ciertas funciones estin autori-
zadas a utilizarlas. Las funciones privadas se definen en sub-directorios que se llaman private y
solo pueden ser llamadas por funciones definidas en el directorio padre del sub-directorio private.

En la busqueda de nombres que hace MATLAB cuando encuentra un nombre en una expresion, las
funciones privadas se buscan inmediatamente después de las sub-funciones, y antes que las funcio-
nes de tipo general.

6.3.9. FUNCIONES *.p

Las funciones *p son funciones *.m pre-compiladas con la funcién pcode. Por defecto el resultado
del comando pcode func.m es un fichero func.p en el directorio actual (el fichero func.m puede
estar en cualquier directorio del search path). El comando pcode -inplace func.m crea el fichero
func.p en el mismo directorio donde encuentra el fichero func.m. Pueden pasarse varios ficheros
*.m al comando pcode de una sola vez.

Los ficheros *p se ejecutan algo mas rdpidamente que los *.m y permiten ocultar el codigo de los
ficheros ASCII correspondientes a las funciones *.m de MATLAB.

6.3.10. VARIABLES PERSISTENTES

Las variables persistentes son variables locales de las funciones (pertenecen al espacio de trabajo
de la funcion y so6lo son visibles en dicho espacio de trabajo), que conservan su valor entre distintas
llamadas a la funcién. Por defecto, las variables locales de una funcion se crean y destruyen cada
vez que se ejecuta la funcion. Las variables persistentes se pueden definir en funciones, pero no en
ficheros de comandos. Es habitual utilizar para ellas letras maytsculas. Las variables se declaran
como persistentes utilizando la palabra persistent seguida de los nombres separados por blancos,
como por ejemplo:

>> persistent VELOCIDAD TIEMPO

Las variables persistent se inicializan a la matriz vacia [] y permanecen en memoria hasta que se
hace clear de la funcion o cuando se modifica el fichero-M. Para evitar que un fichero-M se modifi-
que se puede utilizar el comando mlock file.m, que impide la modificacion del fichero. El comando
munlock desbloquea el fichero mientras que la funcidon mislocked permite saber si estd bloqueado o
no.

6.3.11. VARIABLES GLOBALES

Las variables globales son visibles en todas las funciones (y en el espacio de trabajo base o general)
que las declaran como tales. Dichas variables de declaran precedidas por la palabra global y separa-
das por blancos, en la forma:

global VARIABLE1 VARIABLE2
Como ya se ha apuntado, estas variables so6lo son visibles en los espacios de trabajo de las funciones
que las declaran como tales (y en el propio espacio de trabajo base, si también ahi han sido declara-

das como globales). Ya se ha dicho también que se suele recurrir al criterio de utilizar nombres lar-
gos y con mayusculas, para distinguirlas facilmente de las demas variables.

6.4. Referencias de funcion (function handles)

Las referencias de funcion (function handles) constituyen un nuevo mecanismo pera referirse a un
nombre de funcidn, introducido en MATLAB 6.0. En versiones anteriores la tinica forma de referir-

Capitulo 6: Programacion de MATLAB pagina 73

se a una funcién era por medio del nombre. Téngase en cuenta que MATLAB, al igual que otros
lenguajes de programacion como C/C++ y Java, admite funciones sobrecargadas (overloaded func-
tions), esto es, funciones diferentes que tienen el mismo nombre pero se diferencian entre si por el
nimero y tipo de los argumentos. Cuando un programa llama a una funcién sobrecargada, MA-
TLAB analiza los tipos de los argumentos incluidos en la llamada y llama a la funcién que mejor se
adapta a esos tipos de argumentos. Las referencias de funcion permiten al programador un mayor
control sobre la funcidén que es efectivamente llamada y tienen algunas otras ventajas que se veran
en este apartado y en sus sub-apartados.

El principal uso de las referencias de funcion (como de los nombres de funcioén en versiones ante-
riores) es el pasar a una funcion el nombre de otra funcidn, junto con sus argumentos, para que la
pueda ejecutar. A estas funciones que ejecutan otras funciones que se les pasan como argumentos se
les llama funciones de funcion, y se analizan con mas detalle en el apartado 6.10, a partir de la pa-
gina 83. Por ejemplo, MATLAB dispone de una funcién llamada quad que calcula la integral defi-
nida de una funcion entre unos limites dados. La funcion quad es genérica, esto es calcula, median-
te métodos numéricos, integrales definidas de una amplia variedad de funciones, pero para que pue-
da calcular dicha integral hay que proporcionarle la funcién a integrar. Por ejemplo, para calcular la
integral entre 0 y zde la funcion seno(x) se puede utilizar la sentencia:
>> area=quad('sin',0,pi)

area =
2.0000

La funcion quad ejecuta la funcion sin por medio de la funcién feval, que tiene la siguiente forma
general:
feval (funcname, argl, arg2, arg3, ...)

donde funcname es una cadena de caracteres con el nombre de la funcién a evaluar, y argl, arg2,
arg3, ... son los argumentos que se le pasan a feval para que se los pueda pasar a funcname.

A partir de la version 6.0 de MATLAB ya no se pasa, a las funciones de funcion, el nombre de la
funcién como en el ejemplo anterior, sino una referencia de funcion o function handle. De todas
formas, para mantener la compatibilidad con los programas desarrollados en versiones anteriores, se
sigue admitiendo que se pase a feval el nombre de la funcion, pero este mecanismo ya no se sopor-
tara en versiones posteriores. En MATLAB 6.* la forma correcta de ejecutar el ejemplo anterior
seria (se explicara con mas detalle a continuacién):

fh=@sin;

area=quad (fh,0,pi) ;
donde la variable fh es una referencia de funcion, que es un nuevo tipo de dato de MATLAB, con
todas las posibilidades y limitaciones que esto supone.

6.4.1. CREACION DE REFERENCIAS DE FUNCION

Ya se ha comentado que las referencias de funcion son un nuevo tipo de datos de MATLAB 6.
Una referencia de funcion se puede crear de dos formas diferentes:

1. Mediante el operador @ ("at" o "arroba")

La referencia a la funcién se crea precediendo el nombre de la funcion por el operador @. El
resultado puede asignarse a una variable o pasarse como argumento a una funcion. Ejemplos:
fh = @sin;
area = quad(@sin, 0, pi);

2. Mediante la funcion str2func

Aprenda Matlab 7.0 como si estuviera en Primero pagina 74

La funcidon str2func recibe como argumento una cadena de caracteres conteniendo el nombre
de una funcion y devuelve como valor de retorno la referencia de funcién. Una de las ventajas
de esta funcion es que puede realizar la conversion de un vector de celdas con los nombres en
un vector de referencias de funcion. Ejemplos:

>> fh = str2func('sin');

>> str2func({'sin','cos',6'tan'})

ans =
@sin @cos @tan

Una caracteristica comun e importante de ambos métodos es que se aplican solamente al nombre de
la funcion, y no al nombre de la funcion precedido o cualificado por su path. Ademas los nombres
de funcion deben tener menos de 31 caracteres.

6.4.2. EVALUACION DE FUNCIONES MEDIANTE REFERENCIAS

La principal aplicacion de las referencias de funcion es pasar informacion de funciones a otras fun-
ciones para que aquéllas puedan ser ejecutadas por éstas. Para evaluar una referencia de funcion
MATLARB utiliza la funcion feval, que se llama de la forma siguiente:

[r1, r2, 3, ...] = feval(fh, argl, arg2, arg3, ...)

donde fh es una referencia de funciony r1, r2, r3, ...y argl, arg2, arg3, ... son respectivamente los
valores de retorno y los argumentos de la funcion cuya referencia es fh.

Sobre la funcion feval hay que hacer dos observaciones:

1. La referencia de funcion fh debe ser un escalar. En otras palabras, no es posible evaluar un
array de referencias de funcion con una sola llamada a feval.

2. La funcién fh que se ejecuta en el momento de la llamada a feval depende de la situacion en el
momento en que se creod la referencia de funcidn, y no de la situacion en el momento de la lla-
mada a feval. Por ejemplo, si después de crear la referencia fh se cambia de directorio la fun-
cion correspondiente, en el momento de la ejecucion no serd posible encontrarla; si después de
crear fh se crea una nueva funcioén con el mismo nombre, esta funcidon no podra nunca ser eje-
cutada por medio de la referencia creada previamente.

El siguiente ejemplo muestra como se puede ejecutar una sub-funcion desde otra funcidén definida
en un fichero *.m diferente. Recuérdese que, en principio, las sub-funciones s6lo son accesibles
desde otras funciones definidas en el mismo fichero *.m. Supongase que se crea un fichero llamado
pruebafh.m que contiene las siguientes lineas (se define una funcion principal pruebafh que se lla-
ma como el fichero y una sub-funcion subf):

% fichero pruebafh.m

function mifh=pruebafh
mifh=@subf;

function A=subf (B, C)
A=B+C;

Obsérvese que la funcion principal pruebafh devuelve una referencia a la sub-funcion subf. En
principio solo pruebafh tiene acceso a subf'y gracias a ese acceso puede crear la referencia mifh.
Sin embargo, una vez que la referencia a subf ha sido creada y devuelta como valor de retorno,
cualquier funcion con acceso a pruebafh podra también acceder a la sub-funcion subf. El siguiente
programa principal, definido en un fichero pruebafhMain.m, puede acceder a la sub-funcién gra-
cias a la referencia de funcion (si se intenta acceder directamente se obtiene un error).

Capitulo 6: Programacion de MATLAB pagina 75

% fichero pruebafhMain.m
fh=pruebafh

A=rand(3) ;

B=eye (3) *10;

C=feval (fh,A,B)

% D=subf (A,B) % ERROR
disp('Ya he terminado')

Este ejemplo sencillo es bastante significativo respecto a los beneficios que se pueden obtener de
las referencias de funcion.

6.4.3. INFORMACION CONTENIDA POR UNA REFERENCIA DE FUNCION. FUNCIONES SOBRECARGADAS

Una referencia de funcion puede contener informacion de varias funciones, en concreto de todas
aquellas funciones que fueran "visibles" en el momento en el que dicha referencia fue creada. Re-
cuérdese que funciones visibles, ademas de las funciones intrinsecas de MATLAB (built-in func-
tions) son las funciones que estan definidas en el directorio actual y en los directorios definidos en
el path de MATLAB.

La funcion functions permite obtener toda la informacion disponible de una referencia de funcion.
Obsérvese la estructura salida del siguiente ejemplo (el campo methods es a su vez una estructura
que puede mostrarse por separado):
>> info=functions (@deblank)
function: 'deblank'
type: 'overloaded'
file: 'c:\matlabép5\toolbox\matlab\strfun\deblank'
methods: [1x1 struct]
>> info.methods

ans =
cell: 'c:\matlabé6p5\toolbox\matlab\strfun\@cell\deblank'

En este caso concreto se ha considerado la funcion deblank, que permite eliminar caracteres en
blanco en cadenas de caracteres o en vectoras de celdas con cadenas de caracteres. El valor de re-
torno de la funcion functions es una estructura con los cuatro campos siguientes:

function cadena de caracteres con el nombre de la funcion a la que corresponde la refe-
rencia
type Cadena de caracteres con uno de los siguientes valores: 'simple’, 'subfunction’,

'private’, 'constructor'y 'overloaded'.

file Cadena de caracteres que contiene el nombre del fichero *.m en el que esta de-
finida la funcion o bien el texto '"MATLAB built-in function'.

methods Estructura que contiene los paths de los ficheros *.m en los que estan definidas
las funciones sobrecargadas que se corresponden con esta referencia.

El argumento de la funcion functions debe ser una referencia de funcion escalar (no puede ser un
array de referencias de funcion).

Los distintos valores del campo #ype tienen los siguientes significados:
simple Funciones intrinsecas no sobrecargadas.
overloaded Funciones sobrecargadas. Son las Unicas que tienen campo methods.
constructor Constructores relacionados con clases y objetos.
subfunction Funciones definidas en un fichero *.m de otra funcion.

private Funciones privadas (definidas en un subdirectorio private).

Aprenda Matlab 7.0 como si estuviera en Primero pagina 76

Las funciones sobrecargadas (overloaded) tienen un interés especial, pues son las tinicas que tie-
nen el campo methods y las que pueden dar origen a mas dificultades o problemas. De modo anélo-
go a otros lenguajes de programacion como C/C++ y Java, las funciones sobrecargadas de MA-
TLAB son funciones que tienen el mismo nombre, pero distintos tipos de argumentos y distinto
codigo (en otras palabras, funciones diferentes que solo coinciden en el nombre).

Las funciones default son las que no tienen argumentos especializados. Otras funciones esperan
recibir un argumento de un tipo mas concreto. Salvo que haya una funcién especializada cuyos ar-
gumentos coincidan con los tipos de la llamada, MATLAB utilizara la funcion default.

6.4.4. OTROS ASPECTOS DE LAS REFERENCIAS DE FUNCION

De la misma manera que una cadena de caracteres pude ser convertida en una referencia de funcion
por medio de la funcién str2func, MATLAB dispone de la funcion func2str que realiza la conver-
sion inversa. Puede ser interesante convertir una referencia de funcion en cadena de caracteres para
construir mensajes de error en relacion con construcciones #ry...catch.

Otras funciones que pueden utilizarse en relacion con las referencias de funcion son las siguientes
(se presentas mediante ejemplos):

isa(unaVariable, 'function_handle')

4

Funcion que devuelve "1" 6 "0" segun unaVariable sea o no una referencia de funciéon. Es-
ta funcion se podria utilizar dentro de una funcion de funcidn para comprobar que el argu-
mento que indica la funcion a ejecutar con feval ha llegado correctamente.

isequal (unfh, otrofh)

Funciéon que compara dos referencias a funcion e indica si dan acceso exactamente a los
mismos métodos o no.

Como las referencias de funcion son variables estandar de MATLAB, pueden guardarse y recupe-
rarse de una sesion a otra por medio de los comandos save y load. Hay que tener cuidado al utilizar
referencias de funcion creadas en sesiones anteriores, porque si ha cambiado el entorno de trabajo
en algo que les afecte se obtendra un error en tiempo de ejecucion.

6.4.5. UTILIDAD DE LAS REFERENCIAS DE FUNCION

La principal utilidad de las referencias de funcion es el pasar informacion de una funciéon a otras
funciones que la deben poder ejecutar por medio de feval. Algunas otras ventajas de las referencias
de funciones son las siguientes:

1. Se pueden encontrar todas las funciones con el mismo nombre que son visibles en un deter-
minado estado del programa. De esta forma se tiene mas control sobre la funcidon que verda-
deramente se va a ejecutar.

2. Acceder desde cualquier parte de un programa a las funciones privadas y a las sub-funciones.
De esta forma se puede reducir el nimero de ficheros *.m necesarios, pues muchas funciones
se podréan definir como sub-funciones en un mismo fichero.

3. Megjorar la eficiencia de las funciones que se utilizan repetidamente, pues no es necesario bus-
car el fichero *.m cada vez.

4. Las referencias de funcion son, como se ha dicho, variables ordinarias de MATLAB que pue-
den ser agrupadas en arrays de una o mas dimensiones.

Capitulo 6: Programacion de MATLAB pagina 77

6.4.6. FUNCIONES INLINE

MATLAB permite definir funciones a partir de expresiones matematicas por medio de la funcién
inline. Esta funcion trata de averiguar inteligentemente cudles son los argumentos de la funcion
inline, a partir del contenido de la expresion matematica. Por defecto se supone que 'x' es el ar-
gummento, aunque es también posible determinarlos explicitamente al llamar a inline. Considéren-
se los siguientes ejemplos:

>> f=inline ('expresidén entre apdstrofos');

Q

>> f=inline ('expresién', al, a2, a3); % los argumentos son 'al', 'a2', 'a3'
>> f=inline ('expresién', N); % los argumentos son 'x', 'P1', ..., 'PN'
Las funciones inline se llaman con el handle (f en las sentencias anteriores) seguido de los argu-
mentos entre paréntesis.

6.4.7. FUNCIONES ANONIMAS

Las funciones andénimas constituyen una forma muy flexible de crear funciones sobre la marcha,
bien en la linea de comandos, bien en una linea cualquiera de una funcion o de un fichero *.m. La
forma general de las funciones andnimas es la siguiente:

fhandle = @ (argumentos) expresidn;

Después de ser creada, la funcion anoénima puede ser llamada a través del fhandle seguido de la
lista de argumentos actuales entre paréntesis, o también puede ser pasada a otra funcion como ar-
gumento, también por medio del fhandle. Por ejemplo, la siguiente funcién andnima calcula el va-
lor del seno del angulo doble:

senoAngDoble = @ (ang) 2*sin (and).*cos (ang);

Las funciones anonimas acceden a las variables del espacio de trabajo en el que son definidas y
crean en ese momento una copia de las variables que utilizan. El valor de dichas variables ya no se
actualiza; solo los argumentos pueden cambiar de valor. De esta forma, las funciones anonimas
pueden ejecutarse a ravés del handle en otros espacios de trabajo.

Si las funciones anénimas no tienen argumentos hay que poner los paréntesis vacios, tanto al defi-
nirlas como al llamarlas. Por otra parte, pueden tener varios valores de retorno cuando la expresion
que contienen devuelve varios valores. Se pueden recoger todos o s6lo algunos de estos valores.

La unica limitacion importante de las funciones anonimas es que estan limitadas a una unica ex-
presion ejecutable de MATLAB. Por otra parte, su uso no tiene mas limitaciones que las del uso del
handle de una funcion cualquiera.

6.4.8. FUNCIONES ANIDADADAS

Las funciones anidadas (nested functions) son funciones definidas dentro de otras funciones, las
llamadas funciones contenedoras. Cuando se definen funciones anidadas es imprescindible termi-
nar con una sentencia end la definicion de cada una de las funciones contenidas en el fichero *.m.

Las funciones anidadas sirven para tener un mayor y mejor control sobre la visibilidad de las fun-
ciones (qué funcion puede ser llamada y desde donde), asi como sobre la visibilidad que dichas
flunciones tienen sobre las distintas variables del espacio de trabajo, incluyendo las que no les han
sido pasadas como argumentos.

Una funcidn puede contener varias funciones anidadas al mismo nivel, y una funcion anidada puede
también ser contenedora, es decir contener a su vez una 6 mas funciones anidadas.

A continuacion se muestra un ejemplo sencillo de multiples funciones anidadas a varios niveles:

Aprenda Matlab 7.0 como si estuviera en Primero pagina 78

function A(argl)
function Aa(al,a2)
function Aal ()

end
end

%ééétion Ab ()
éﬁéction Abl ()
end
é&éction Ab2 ()
end

end

end

Reglas para llamar a las funciones anidadas:

1.
2.

Una funcion anidada se puede llamar desde cualquier otra funcion que tenga acceso al handle.

Una funcién anidada se puede llamar directamente desde la funcion del nivel inmediatamente
superior. Por ejemplo, la funcion A puede llamar a las funciones Aa y Ab, pero no a las funcio-
nes Ab1 y Ab2 que estan dos niveles mas abajo.

Una funcion anidada puede llamar a otras funciones anidadas en la misma funcién contenedora
y al mismo nivel. Por ejemplo, la funcion Aa puede llamar a la funcion Ab, y la Ab1 a la Ab2.

Una funcién anidada puede llamar a todas las que estan por encima de ella en linea directa. Por
ejemplo, la funcién Ab2 puede llamar a las funciones A y Ab. Una funcion anidada no puede
llamar a las que estan al mismo nivel en otra rama; por ejemplo, Aal no pueede llamar a Ab2.

Ademas, cualquier funcion anidada puede llamar a todas las sub-funciones definidas en el mis-
mo fichero.

Reglas para la visibilidad de las variables con sub-funciones y funciones anidadas:

1.

En general, las funciones y sub-funciones definidas en el mismo fichero tienen espacios de tra-
bajo diferentes. Como consecuencia, las variables definidas en una funcioén son variables loca-
les que no pueden ser vistas por otras funciones o sub-funciones.

También una funcidén anidada tiene su propio espacio de trabajo, pero ademas tiene acceso a
todas las variables definidas por las funciones que estan por encima de ella en la jerarquia de
funciones anidadas.

También las funciones contenedoras ven y pueden modificar las variables locales definidas en
sus funciones anidadas, siempre que definan o usen dichas variables. Como regla general, una
variable usada o definida en una funcion anidada pertenece al espacio de trabajo de la funcion
contenedora mas exterior que de alguna manera accede a dicha variable.

Como consecuencia de lo dicho, si una funciéon contenedora no usa o define una variable, pero
esa variable es definida por dos funciones anidadas al mismo nivel en dicha funcién, dichas va-
riables en las funciones anidadas son realmente variables distintas, pues al no ser usadas por la
funcién contenedora no se transmiten a su espacio de trabajo.

Capitulo 6: Programacion de MATLAB pagina 79

5. Las variables correspondientes a los valores de retorno de una funcién anidada no pertenecen al
espacio de trabajo de las funciones contenedoras que las llaman. Los valores d eretorno deben
ser recogidoa explicitamente.

Recuérdese que el handle debe ser creado desde un punto del programa en el que la funcion es visi-
ble. Sin embargo, es posible utilizarlo luego en otro punto desde el que la funcion ya no sea visible.
Estas reglas se aplican también a las funciones anidadas, aunque con algunas peculiaridades. En el
momento de la creacion del handle, las funciones anidadas tienen acceso a un espacio de trabajo
ampliado con el de otras funciones del fichero *.m, segun se ha expuesto. Para que esta funcion
pueda ser llamada a través del handle en otro lugar del programa, en el momento de la creacion del
handle se crea una copia de las variables de su espacio de trabajo ampliado; estas copias son de tipo
persistent y se conservan entre llamadas. Se recomienda ver los ejemplos en el Help de MATLAB.

6.5. Entraday salida de datos

Ya se ha visto una forma de realizar la entrada interactiva de datos por medio de la funcion input y
de imprimir resultados por medio de la funcion disp. Ahora se van a ver otras formas de intercam-
biar datos con otras aplicaciones.

6.5.1. IMPORTAR DATOS DE OTRAS APLICACIONES

Hay varias formas de pasar datos de otras aplicaciones —por ejemplo de Excel- a MATLAB. Se
pueden enumerar las siguientes:

— se puede utilizar el Copy y Paste para copiar datos de la aplicacion original y depositarlos en-
tre los corchetes de una matriz o vector, en una linea de comandos de MATLAB. Tiene el in-
conveniente de que estos datos no se pueden editar.

— se puede crear un fichero *m con un editor de textos, con lo cual no existen problemas de
edicion.

— es posible leer un flat file escrito con caracteres ASCIIL. Un flat file es un fichero con filas de
longitud constante separadas con Intro, y varios datos por fila separados por blancos. Estos
ficheros pueden ser leidos desde MATLAB con el comando load. Si se ejecuta load datos.txt
el contenido del flat file se deposita en una matriz con el nombre datos. Por ejemplo, creando
un fichero llamado flat.txt que contenga las lineas:

23.456 56.032 67.802
3.749 -98.906 34.910

el comando A=load ('flat.txt') leerd estos valores y los asignara a la matriz 4. Para mas
informacion utilizar help load.

— el comando textread permite leer datos de cualquier tipo de un fichero siempre que estén con-
venientemente separados. Ver el Help para mas informacion.

— se pueden leer datos de un fichero con las funciones fopen y fread (ver apartados 6.6.1 y
6.6.3, en las paginas 80 y 81).

— existen también otros métodos posibles: escribir funciones en C para traducir a formato *.mat
(y cargar después con load), crear un fichero ejecutable *.mex que lea los datos, etc. No se ve-
ran en estos apuntes.

6.5.2. EXPORTAR DATOS A OTRAS APLICACIONES

De forma andloga, también los resultados de MATLAB se pueden exportar a otras aplicaciones
como Word o Excel.

Aprenda Matlab 7.0 como si estuviera en Primero pagina 80

utilizar el comando diary para datos de pequefio tamafio (ver apartado 2.9, en la pagina 21)
— utilizar el comando save con la opcidon —ascii (ver apartado 2.7, en la pagina 19)

— utilizar las funciones de bajo nivel fopen, fwrite y otras (ver apartados 6.6.1 y 6.6.3, en las
paginas 80y 81)

— otros métodos que no se veran aqui: escribir subrutinas en C para traducir de formato *.mat
(guardando previamente con save), crear un fichero ejecutable *.mex que escriba los datos,
etc.

Hay que senalar que los ficheros binarios *.mat son trasportables entre versiones de MATLAB en
distintos tipos de computadores, porque contienen informacion sobre el tipo de maquina en el sea-
der del fichero, y el programa realiza la transformacion de modo automatico. Los ficheros *.m son
de tipo ASCII, y por tanto pueden ser leidos por distintos computadores sin problemas de ningun
tipo.

6.6. Lecturay escritura de ficheros

MATLAB dispone de funciones de lectura/escritura analogas a las del lenguaje C (en las que estan
inspiradas), aunque con algunas diferencias. En general son versiones simplificadas —con menos
opciones y posibilidades— que las correspondientes funciones de C.

6.6.1. FUNCIONES FOPENY FCLOSE

Estas funciones sirven para abrir y cerrar ficheros, respectivamente. La funcion fopen tiene la forma
siguiente:

[fi,texto] = fopen('filename',6'c')

donde fi es un valor de retorno que sirve como identificador del fichero, texto es un mensaje para
caso de que se produzca un error, y ¢ es un caracter (o dos) que indica el tipo de operacidon que se
desea realizar. Las opciones mds importantes son las siguientes:

1.0

r lectura (de read)

x/'

4 escritura reemplazando (de write)
'a' escritura a continuacion (de append)
"r+' lectura y escritura

Cuando por alguna razoén el fichero no puede ser abierto, se devuelve un (-1). En este caso el valor
de retorno texto puede proporcionar informacidn sobre el tipo de error que se ha producido (tam-
bién existe una funcion llamada ferror que permite obtener informacion sobre los errores. En el
Help del programa se puede ver como utilizar esta funcion).

Después de realizar las operaciones de lectura y escritura deseadas, el fichero se puede cerrar con la
funcioén close en la forma siguiente:

st = fclose(fi)
donde st es un valor de retorno para posibles condiciones de error. Si se quieren cerrar a la vez to-
dos los ficheros abiertos puede utilizarse el comando:

st = close('all')

6.6.2. FUNCIONES FSCANF, SSCANF, FPRINTF Y SPRINTF

Estas funciones permiten leer y escribir en ficheros ASCII, es decir, en ficheros formateados. La
forma general de la funcidn fScanf es la siguiente:

[varl,var2,...] = fscanf(fi, 'cadena de control', size)

Capitulo 6: Programacion de MATLAB pagina 81

donde fi es el identificador del fichero (devuelto por la funcion fopen), y size es un argumento op-
cional que puede indicar el tamaiio del vector o matriz a leer. Obsérvese otra diferencia con C: las
variables leidas se devuelven como valor de retorno y no como argumentos pasados por referencia
(precedidos por el cardcter &). La cadena de control va encerrada entre apostrofos simples, y con-
tiene los especificadores de formato para las variables:

%s para cadenas de caracteres

%d para variables enteras

%f para variables de punto flotante
%lf para variables de doble precision

La funcioén sscanf es similar a fscanf pero la entrada de caracteres no proviene de un fichero sino de
una cadena de caracteres.

Finalmente, la funcion fprintf dirige su salida formateada hacia el fichero indicado por el identifi-
cador. Su forma general es:

fprintf (fi, 'cadena de control',6varl,var2,...)

Esta es la funcidon mas parecida a su homoéloga de C. La cadena de control contiene los formatos de
escritura, que son similares a los de C, como muestran los ejemplos siguientes:

fprintf (fi, 'E1 numero de ecuaciones es: %d\n',n)
fprintf (fi, 'E1 determinante es: %1£f10.4\n',n)

De forma andloga, la funcion sprintf convierte su resultado en una cadena de caracteres que devuel-
ve como valor de retorno, en vez de enviarlo a un fichero. Véase un ejemplo:

resultado = sprintf('El cuadrado de %f es %12.4f\n',n,n*n)

donde resultado es una cadena de caracteres. Esta funcion constituye el método mas general de
convertir nimeros en cadenas de caracteres, por ejemplo para ponerlos como titulos de figuras.

6.6.3. FUNCIONES FREAD Y FWRITE

Estas funciones son analogas a fscanf'y fprintf, pero en vez de leer o escribir en un fichero de texto
(ASCII), lo hacen en un fichero binario, no legible directamente por el usuario. Aunque dichos fi-
cheros no se pueden leer y/o modificar con un editor de textos, tienen la ventaja de que las opera-
ciones de lectura y escritura son mucho mas répidas, eficientes y precisas (no se pierden decimales
al escribir). Esto es particularmente significativo para grandes ficheros de datos. Para més informa-
cion sobre estas funciones se puede utilizar el help.

6.6.4. FICHEROS DE ACCESO DIRECTO

De ordinario los ficheros de disco se leen y escriben secuencialmente, es decir, de principio a final,
sin volver nunca hacia atras ni realizar saltos. Sin embargo, a veces interesa acceder a un fichero de
un modo arbitrario, sin ningun orden preestablecido. Esto se puede conseguir con las funciones ftell
y fseek.

En cada momento, hay una especie de cursor que indica en qué parte del fichero se estd posiciona-
do. La funcién fseek permite mover este cursor hacia delante o hacia atrés, respecto a la posicion
actual ('cof"), respecto al principio ('bof") o respecto al final del fichero (‘eof'). La funcidn ftell indica
en qué posicion esta el cursor. Si alguna vez se necesita utilizar este tipo de acceso a disco, se puede
buscar mas informacion por medio del help.

Aprenda Matlab 7.0 como si estuviera en Primero pagina 82

6.7. Recomendaciones generales de programacion

Las funciones vectoriales de MATLAB son mucho mas rapidas que sus contrapartidas escalares. En
la medida de lo posible es muy interesante vectorizar los algoritmos de célculo, es decir, realizarlos
con vectores y matrices, y no con variables escalares dentro de bucles.

Aunque los vectores y matrices pueden ir creciendo a medida que se necesita, es mucho mas rapido
reservarles toda la memoria necesaria al comienzo del programa. Se puede utilizar para ello la fun-
cion zeros. Ademas de este modo la memoria reservada es contigua.

Es importante utilizar el profile para conocer en qué sentencias de cada funcion se gasta la mayor
parte del tiempo de calculo. De esta forma se descubren “cuellos de botella” y se pueden desaroollar
aplicaciones mucho mas eficientes.

Conviene desarrollar los programas incrementalmente, comprobando cada funcién o componente
que se afiade. De esta forma siempre se construye sobre algo que ya ha sido comprobado y que fun-
ciona: si aparece algun error, lo mas probable es que se deba a lo ltimo que se ha afiadido, y de
esta manera la busqueda de errores esta acotada y es mucho mas sencilla. Recuérdese que de ordi-
nario el tiempo de correccion de errores en un programa puede ser 4 6 5 veces superior al tiempo de
programacion. El debugger es una herramienta muy util a la hora de acortar ese tiempo de puesta a
punto.

En este mismo sentido, puede decirse que pensar bien las cosas al programar (sobre una hoja de
papel en blanco, mejor que sobre la pantalla del PC) siempre es rentable, porque se disminuye mas
que proporcionalmente el tiempo de depuracion y eliminacion de errores.

Otro objetivo de la programacion debe ser mantener el codigo lo mas sencillo y ordenado posible.
Al pensar en como hacer un programa o en como realizar determinada tarea es conveniente pensar
siempre primero en la solucién mas sencilla, y luego plantearse otras cuestiones como la eficiencia.

Finalmente, el cddigo debe ser escrito de una manera clara y ordenada, introduciendo comentarios,
utilizando lineas en blanco para separar las distintas partes del programa, sangrando las lineas para
ver claramente el rango de las bifurcaciones y bucles, utilizando nombres de variables que recuer-
den al significado de la magnitud fisica correspondientes, etc.

En cualquier caso, la mejor forma (y la inica) de aprender a programar es programando.

6.8. Acelerador JIT (Just In Time) en MATLAB

La version 6.5 de MATLAB incorpord por primera vez un acelerador para los ficheros *.m, que
permite acercarse a las velocidades de otros lenguajes de programacién como Fortran y C/C++.

Es importante saber qué tipo de programas pueden ser acelerados y cudles no lo son. En principio
MATLAB acelera los bucles de los ficheros *.m que no contienen cierto tipo de sentencias. Mas en
concreto, se pueden ofrecer las siguientes recomendaciones practicas:

1. No utilizar estructuras, vectores de celdas, clases ni llamadas a funcién por medio de referen-
cias.

2. No utilizar hipermatrices con més de tres dimensiones.

3. Utilizar solo llamadas a funciones nativas de MATLAB (funciones compiladas, no definidas
por medio de ficheros *.m o ficheros MEX).

4. No utilizar variables que cambian de tipo a lo largo de la ejecucion (por ejemplo, una variable
que primero es una cadena de caracteres y luego pasa a ser una matriz real).

Capitulo 6: Programacion de MATLAB pagina 83

5. No utilizar las variables i y/o j con nimeros complejos como si fueran variables normales (por
ejemplo, no utilizar 3*i, sino 3i).

6. No utilizar vectores y/o matrices que crecen a lo largo de la ejecucion del programa. Es mu-
cho mejor reservar previamente toda la memoria necesaria mediante la funcion zeros, ones o
equivalente.

6.9. Llamada a comandos del sistema operativo y a otras funciones externas
Estando en la ventana de comandos de MATLARB, se pueden ejecutar comandos de MS-DOS pre-
cediéndolos por el caracter (!), como por ejemplo:
>> ledit ficherol.m
Si el comando va seguido por el caracter ampersand (&) el comando se ejecuta en “background”, es

decir, se recupera el control del programa sin esperar que el comando termine de ejecutarse. Por
ejemplo, para arrancar Notepad en background,

>> !notepad &
Existe también la posibilidad de arrancar una aplicacion y dejarla iconizada. Esto se hace postpo-
niendo el caricter barra vertical (|), como por ejemplo en el comando:

>> Inotepad |
Algunos comandos de MATLAB realizan la misma funcién que los comandos analogos del sistema

operativo MS-DOS, con lo que se puede evitar utilizar el operador (!). Algunos de estos comandos
son los siguientes:

dir contenido del directorio actual

what ficheros *.m en el directorio actual

delete filename borra el fichero llamado filename

mkdir(nd) crea un sub-directorio con el nombre nd

copyfile(sc, dst) copia el fichero sc en el fichero dst

type file.txt imprime por la pantalla el contenido del fichero de texto file.txt
cd cambiar de directorio activo

pwd muestra el path del directorio actual

which func localiza una funcién llamada func

lookfor palabra busca palabra en todas las primeras lineas de los ficheros *.m

6.10. Funciones de funcion

Como ya se ha comentado al hablar de las referencias de funcion, en MATLAB existen funciones a
las que hay que pasar como argumento el nombre de otras funciones, para que puedan ser llamadas
desde dicha funcion. Asi sucede por ejemplo si se desea calcular la integral definida de una funcion,
resolver una ecuacion no lineal, o integrar numéricamente una ecuacion diferencial ordinaria (pro-
blema de valor inicial). Estos seran los tres casos —de gran importancia practica— que se van a ver a
continuacion. Se comenzara por medio de un ejemplo, utilizando una funcién llamada prueba que
se va a definir en un fichero llamado prueba.m.

Aprenda Matlab 7.0 como si estuviera en Primero pagina 84

Para definir esta funcion, se debe elegir FILE/New/M-File en el menu de MATLAB. Si las cosas
estan "en orden" se abrird el Editor&Debugger para

. . -) Figure 1 }Z =lalx|
que se pueda editar ese fichero. Una vez abierto el ‘s e vew met roob ooop wson rep >
Editor, se deben teclear las 2 lineas siguientes: L€ s iElis o F [N B

100

function y=prueba (x)
y = 1./((x-.3).%2+.01)+1./...
((x-.9) .722+.04)-6;

a0

guardandolo después con el nombre de prueba.m. La =

definicion de funciones se ha visto con detalle en el ol
apartado 6.3.2, a partir de la pagina 68. El fichero
anterior ha definido una nueva funcién que puede ser
utilizada como cualquier otra de las funciones de
MATLAB. Antes de seguir adelante, conviene ver el

201

aspecto que tiene esta funcion que se acaba de crear. BT 5 o5 i 75 2
Para dibujar la funcion prueba, tecléense los siguien-
tes Comandos: Figura 31. Funcion “prueba”.

>> x=-1:0.1:2;
>> plot(x,prueba (x))

El resultado aparece en la Figura 31. Ya se esta en condiciones de intentar hacer calculos y pruebas
con esta funcion.

6.10.1.INTEGRACION NUMERICA DE FUNCIONES

Lo primero que se va a hacer es calcular la integral definida de esta funcion entre dos valores de la
abscisa x. En inglés, al calculo numérico de integrales definidas se le llama quadrature. Sabiendo
eso, no resulta extrafio el comando con el cual se calcula el area comprendida bajo la funcion entre
los puntos 0 y 1 (obsérvese que la referencia de la funcién a integrar se pasa por medio del operador
@ precediendo al nombre de la funcion. También podria crearse una variable para ello):

>> area = quad(@prueba, 0, 1)

area =
29.8583

Si se teclea help quad se puede obtener mas de informacidn sobre esta funcion, incluyendo el mé-
todo utilizado (Simpson) y la forma de controlar el error de la integracion.

La funcion quadl() utiliza un método de orden superior (Lobatto), mientras que la funcidén
dblquad() realiza integrales definidas dobles y la funcion triplequad() realiza integrales de volu-
men. Ver el Help o los manuales online para mas informacion.

6.10.2. ECUACIONES NO LINEALES Y OPTIMIZACION

Después de todo, calcular integrales definidas no es tan dificil. Mas dificil es desde luego calcular
las raices de ecuaciones no lineales, y el minimo o los minimos de una funcion. MATLAB dispone
de las tres funciones siguientes:

fzero calcula un cero o una raiz de una funcién de una variable
fminbnd calcula el minimo de una funcién de una variable
fminsearch calcula el minimo de una funcién de varias variables
optimset permite establecer los pardmetros del proceso de calculo

Se empezara con el calculo de raices. Del grafico de la funcidon prueba entre -1 y 2 resulta evidente
que dicha funcion tiene dos raices en ese intervalo. La funcidon fzero calcula una y se conforma:

Capitulo 6: Programacion de MATLAB pagina 85

(Cual es la que calcula? Pues depende de un parametro o argumento que indica un punto de partida
para buscar la raiz. Véanse los siguientes comandos y resultados:
>> fzero (@prueba, -.5)
ans =
-0.1316
>> fzero (Q@prueba, 2)

ans =
1.2995

En el primer caso se ha dicho al programa que empiece a buscar en el punto -0.5 y la solucion en-
contrada ha sido -0.1316. En el segundo caso ha empezado a buscar en el punto de abscisa 2 y ha
encontrado otra raiz en el punto 1.2995. Se ven claras las limitaciones de esta funcion.

La funcion fzero() tiene también otras formas interesantes:

fzero(@prueba, [x1,x2]) calcula una raiz en el intervalo x1-x2. Es necesario que la fun-
cion tenga distinto signo en los extremos del intervalo.

fzero(@prueba, x, options) calcula la raiz mas préxima a x con ciertas opciones definidas
en la estructura options. Esta estructura se crea con la funcion
optimset.
La funcién optimset tiene la siguiente forma general:
options = optimset ('paraml',vall, 'param2',val2, ...
en la que se indican los nombres de los parametros u opciones que se desean modificar y los valores
que se desea dar para cada uno de dichos pardmetros. Una segunda forma general es:
options = optimset (oldopts, 'paraml',vall, 'param?2',val2,...)

en la que se obtienen unas nuevas opciones modificando unas opciones anteriores con una serie de
parejas nombre-valor de parametros.

Existen muchas opciones que pueden ser definidas por medio de la funcidon optimset. Algunas de las
mas caracteristicas son las siguientes (las dos primeras estdn dirigidas a evitar procesos iterativos
que no acaben nunca y la tercera a controlar la precision en los célculos):

MaxFunEvals maximo nimero de evaluaciones de funcidon permitidas
MaxlIter maximo niimero de iteraciones
TolX error maximo permitido en la abscisa de la raiz

Ahora se va a calcular el minimo de la funcion prueba. Definase una funcion llamada prueba?2 que
sea prueba cambiada de signo, y tratese de reproducir en el PC los siguientes comandos y resulta-
dos (para calcular méximos con fimin bastaria con cambiar el signo de la funcion):

>> plot(x,prueba2 (x))

>> fminbnd (@prueba2, -1,2)

ans =

0.3004
>> fminbnd (@prueba2, 0.5,1)

ans =
0.8927

También a la funcioén fiminbnd se le puede pasar la estructura options. Por ejemplo, para fijar un
error de 10 se puede proceder del siguiente modo:

>> options=optimset('TolX', 1le-08);
>> fminbnd (@prueba2, 0.5,1, options)

Aprenda Matlab 7.0 como si estuviera en Primero pagina 86

En cualquier caso, es importante observar que para calcular las raices o los valores minimos de una
funcion, hay que pasar el nombre de esta funcidon como argumento a la funcion de MATLAB que va
a hacer los célculos. En esto consiste el concepto de funcion de funcion.

MATLAB tiene un toolbox o paquete especial (que debe ser adquirido aparte)) con muchas mas
funciones orientadas a la optimizacion, es decir al célculo de valores minimos de funciones, con o
sin restricciones.

6.10.3.INTEGRACION NUMERICA DE ECUACIONES DIFERENCIALES ORDINARIAS

Este es otro campo en el que las capacidades de MATLAB pueden resultar de gran utilidad a los
ingenieros o futuros ingenieros interesados en la simulacion. MATLAB es capaz de calcular la evo-
lucion en el tiempo de sistemas de ecuaciones diferenciales ordinarias de primer orden, lineales y no
lineales. Por el momento se supondréd que las ecuaciones diferenciales se pueden escribir en la for-
ma:

y=1f(y.1) (7)

donde ¢ es la variable escalar, y tanto y como su derivada son vectores. Un ejemplo tipico puede ser
el tiro parabdlico, considerando una resistencia del aire proporcional al cuadrado de la velocidad.
Se supone que dicha fuerza responde a la siguiente expresion vectorial:

=)

donde ¢ es una constante conocida. Las ecuaciones diferenciales del movimiento seran:

{;}) ﬂ{—gg}“’m {;}j ©)

pero éste es un sistema de 2 ecuaciones diferenciales de orden 2. Para poderlo integrar debe tener la

forma del sistema (7 ara ello se va a trasformar en un sistema de 4 ecuaciones diferenciales de
b

primer orden, de la forma siguiente:

u 0 u
v -g c 5 N |V

= ——lu” +v 10
X u m ()O (10)
b% v 0

MATLAB dispone de varias funciones para integrar sistemas de ecuaciones diferenciales ordinarias
de primer orden, entre ellas ode23, que utiliza el método de Runge-Kutta de segundo/tercer orden, y
oded5, que utiliza el método de Runge-Kutta-Fehlberg de cuarto/quinto orden. Ambas exigen al
usuario escribir una funcion que calcule las derivadas a partir del vector de variables, en la forma
indicada por la ecuacion (7).

Cree con el Editor/Debugger un fichero llamado tiropar.m que contenga las siguientes lineas:

function deriv=tiropar(t,y)
fac=-(0.001/1.0) *sqrt ((y (1) *2+y(2)*2));
deriv=zeros(4,1);

deriv(l)=fac*y (1) ;
deriv(2)=fac*y(2)-9.8;

deriv(3)=y (1) ;

deriv (4)=y(2);

Capitulo 6: Programacion de MATLAB pagina 87

En el programa anterior se han supuesto unas constantes con los valores de ¢=0.001, m=1 y g=9.8.
Falta fijar los valores iniciales de posicioén y velocidad. Se supondra que el proyectil parte del ori-
gen con una velocidad de 100 m/seg y con un dngulo de 30°, lo que conduce a los valores iniciales
siguientes: u(0)=100*cos(pi/6), v(0)=100*sin(pi/6), x(0)=0, (0)=0. Los comandos para realizar la
integracion son los siguientes (se suponen agrupados en un fichero tiroparMain.m):

oe

fichero tiroparMain.m
intervalo de integracién
tspan=[0,9];

% condiciones iniciales

y0=[100*cos (pi/6) 100*sin(pi/6) 0 0]';

% llamar a la funcidén de integracidn numérica
[t,Y]=oded5 (Rtiropar, tspan,y0) ;

% dibujo de la altura en funcidén del tiempo
plot(t,Y¥(:,4)), grid

disp('Ya he terminado')

o

En estos comandos tspan es un vector que define ¢l pErF T o x]
intervalo temporal de integracion. Es muy importante 5 Soa v ars pp

que en la funcidn ode435, el vector de condiciones ini-
ciales y0 sea un vector columna. El vector t devuelto A LS A R
por ode45 contiene los valores del tiempo para los cua- R v R e S G
les se ha calculado la posicion y velocidad. Dichos va-
lores son controlados por la funcién ede45 y no por el
usuario, por lo que de ordinario no estaran igualmente 7
espaciados. La matriz de resultados Y contiene cuatro o /.
columnas (las dos velocidades y las dos coordenadas de :
cada posicion) y tantas filas como elementos tiene el
vector t. En la Figura 32 se muestra el resultado del
ejemplo anterior (posicion vertical en funcion del tiem-

po). Figura 32. Tiro parabolico (posicion vertical

MATLAB dispone de varias funciones para la integra- en funcion del tiempo).

cion de sistemas de ecuaciones diferenciales ordinarias. Se pueden citar las siguientes, clasificadas
segun una caracteristica de las ecuaciones que se desea integrar:

Sistemas no-rigidos ode23, ode45 y odel 13
Sistemas rigidos odel5s, ode23s, 0dq23t y ode23th

La rigidez (stiffness, en la literatura inglesa) es una caracteristica de muchos sistemas de ecuaciones
diferenciales ordinarias que aparecen en la practica y que los hace mas dificiles de resolver. Una
explicacion detallada de esta caracteristica excede la finalidad de este manual, pero si se puede dar
una muy breve explicacion.

Muchos integradores numéricos estan basados en formulas que permiten predecir el valor de la fun-
cion en t+At a partir del valor de la funcion y de su derivada en el instante t y anteriores:

Yiiar :f(yt’yt—At""aYt7Yt—At"“’t) (11)

A estos integradores se les llama integradores explicitos. Todo lo que necesitan es que el usuario
programe una funcién que calcule la derivada en la forma indicada en la ecuacion (7).

En la solucion de un sistema de ecuaciones diferenciales ordinarias aparecen combinadas diversas
componentes oscilatorias (tipo seno, coseno o similar). Algunas de estas componentes oscilan mas
rapidamente que otras (tienen una frecuencia mas elevada). Los problemas rigidos o stiff son aque-
llos en cuya solucién participan componentes de frecuencias muy diferentes (muy altas y muy ba-

Aprenda Matlab 7.0 como si estuviera en Primero pagina 88

jas). Todos los integradores de MATLAB tienen control automatico del error. Quiere esto decir que
el usuario fija el error que esta dispuesto a admitir en la solucion y MATLAB ajusta el paso de la
integracion para conseguir ese error. Los integradores explicitos detectan la posible presencia de
componentes de alta frecuencia en la solucion y tratan de adaptar a ellas su paso, que se hace dema-
siado pequefio y termina por detener la integracion.

Los integradores implicitos son mucho mas apropiados para los problemas sziff. En lugar de utilizar
formulas del tipo de la ecuacion (11) utilizan féormulas del tipo:

Yoar = f(ytmt’yt’yt—m"“’ YI+At’Yt’Yt—At"“’t) (12)

El problema con la expresion (12) es que para calcular la funcion en t+At hace uso de la derivada en
ese mismo instante, que no puede ser conocida si no se conoce la funcion. Eso quiere decir que el
sistema (12) es un sistema de ecuaciones no lineales que hay que resolver iterativamente. Los sis-
temas de ecuaciones no lineales se resuelven mucho mas rapidamente si se conoce la derivada de la
funcién (un ejemplo es el método de Newton-Raphson). Los integradores stiff de MATLAB son
capaces de calcular esta derivada numéricamente (por diferencias finitas), pero son mucho mas efi-
cientes si el usuario es capaz de escribir una segunda funcién que les dé esta derivada. Esta deriva-
da, que en realidad es una matriz de derivadas, es la Jacobiana. Los integradores stiff, ademas de la

ecuacion (7), permiten para el sistema de ecuaciones diferenciales una forma algo mas especializa-
da:

M(y.)y -f(y,1)=0 (13)

en cuyo caso el usuario también tiene que proporcionar una funcion que calcule la matriz M(y,?). La
ecuacion (13) representa un gran nimero de casos practicos, por ejemplo los que surgen de las
ecuaciones diferenciales del movimiento en Mecanica.

La forma mas basica para todos los integradores de MATLAB es la siguiente:

[t, Y] = solvername(fh, tspan, yO0)
donde fh es una referencia de la funcion que permite calcular la derivada segun la expresion (7),
tspan puede ser un vector de dos elementos [tini, tfinal] que representan el comienzo y el fin de la
integracion o un vector de tiempos [tini:tstep:tfinal] en los cuales se desea que MATLAB devuelva
resultados, e y0 es un vector columna con los valores iniciales. Como resultado se obtiene el vector

t de tiempos en los que se dan resultados y una matriz Y con tantas filas como tiempos de salida y
que representan cada una de ellas la salida en el correspondiente instante de tiempo.

Una forma mas elaborada de llamar a los integradores de MATLAB es la siguiente:

[t, Y] = solvername(fh, tspan, y0, options)
donde options es una estructura similar a la vista en el apartado anterior para el calculo de raices y
minimos de funciones. En este caso la estructura options (que es diferente de la anterior, aunque se

esté utilizando el mismo nombre) se determina por medio de la funcién odeset, que admite las for-
mas siguientes:

options = odeset('paraml', wvall,'param2',6K val2, ...);
options = odeset(oldopt, 'paraml',6 vall, 'param2',6 val2, ...);
Entre los pardmetros u opciones mas importantes se pueden citar los siguientes (se puede obtener

mas informacion sobre ellos consultando odeset en el Help. Los parametros en cursiva seran utili-
zados o explicados en los ejemplos que siguen):

Para el error RelTol , AbsTol, NormControl
Para el paso InitialStep, MaxStep

Capitulo 6: Programacion de MATLAB pagina 89

Para lamatrizM Mass, MstateDependence, MvPattern, MassSingular e InitialSlope
Para el Jacobiano Jacobian, JPattern, Vectorized
Para la salida OutputFcn, OutputSel, Refine, Stats

A continuacion se va a repetir el ejemplo de tiro parabdlico presentado al comienzo de esta Seccion
utilizando el integrador implicito edel5s con algunas opciones modificadas. Para ello la ecuacion
(10) se va a re-escribir en la forma de la ecuacion (13), resultando:

m 0 0 O||u 0 u
0 00 -
m e o) (14)
0O 0 1 Of|x u 0
0 0 0 1|y Y 0

En este caso el programa principal se ha denominado tiroparMain2 y tiene la siguiente forma:

% fichero tiroparMain2.m
clear all, close all
t0=0; tf=10; npoints=51;
y0=[100*cos (pi/6),100*sin(pi/6),0,01";
% vector de puntos en los que se desea resultados
tspan=[t0: (tf-t0) / (npoints-1) :tf];
% modificacidén de las opciones por defecto
m=1; M=eye(4); M(1,1)=m; M(2,2)=m;
options = odeset('RelTol’',le-04, 'AbsTol',6le-06,
'Stats','on', 'Mass',6M, ..
'OutputFcn',Qodeplot, 'OutputSel',[1,2,3,4]);
% llamada a la funcidén de integracidn numérica
[t,Y]=odel5s (Rtiropar2, tspan,y0,options, m);
% dibujo de la altura del mévil en funcidn del tiempo
figure, plot(t,Y¥(:,4)), grid
disp('Ya he terminado!"')

Obsérvese como se han definido nuevas tolerancias para los errores absoluto y relativo, que se ha
activado la opcidon de imprimir estadisticas y que se le indica al programa que se le da una matriz de
masas constante en una variable llamada M (La otra opcion para el argumento 'Mass' es una refe-
rencia a la funcion que se encargara de calcular la matriz de masas). La funcién tiropar2 no ha su-
frido cambios importantes respecto a tiropar y es asi:

function deriv=tiropar2 (t,y, m)

% Ecuacidédn diferencial en la forma
s M*yp=£f(t,y);

deriv=zeros(4,1);
fac=-(0.001) *sqgrt ((y (1) "2+y(2)"2));

deriv (l)=fac*y(1l);

deriv (2)=fac*y(2)-9.8*m;
deriv (3)=y(1l);

deriv (4)=y(2);

El cambio mas importante consiste en que a la funcién tiropar2 se le ha pasado como argumento la
msa m del proyectil. En efecto, la forma que tiene MATLAB para pasar argumentos desde el pro-
grama principal a las funciones llamadas por el integrador es poner estos argumentos a continuacion
de options, en la llamada al integrador. El integrador recoge estos argumentos y los transmite.

El resultado de MATLAB incluye las estadisticas solicitadas y es el siguiente:

Aprenda Matlab 7.0 como si estuviera en Primero

32 successful steps

0 failed attempts

58 function evaluations

1 partial derivatives

9 LU decompositions

51 solutions of linear systems

pagina 90

Una tercera y mas sofisticada forma de llamar a los integradores de MATLAB podria ser la que se
muestra a continuacion. Aunque se trata de un ejemplo muy sencillo, se han incluido en él muchas
de las caracteristicas mas avanzadas de los integradores de MATLAB, de aplicacion en casos mu-
cho mas complicados. Los lectores interesados en las técnicas de simulacion deben estudiar con
atencion el programa que sigue y los comentarios que se acompanan.

HOodo U ds WN -
O+ ¢ o o e e e 4

GOOTOoEd BB DSEDSDSDSNEDNDLWWWWWWWWWWNDNNNNONNNOMNNNOMNMNNNRERRRRERERRBRR
MNRFRFROWONONUD WNREFEFOOVOJIJOHUBWNMNRFROOWOJOOUIdWNDNROOVOJIOULES WN PR

% fichero tiroparMain3.m

function tiroparMain3

% Intervalo de integracion

t0=0; tf=12; npoints=51;

tspan=[t0: (tf-t0) / (npoints-1) :tf];

% condiciones iniciales

y0=[100*cos (pi/6) ,100*sin(pi/6) ,0,-10]";

% elementos ~=0 en la Jacobiana de f() en la ec. dif. M(t,y)*yp=£f(t,vy)

Jp=sparse([1 1 0 0; 1 1 0 0; 1 00 0; 01 0 01);

options = odeset('RelTol',le-06, 'AbsTol',le-06, 'Mass', @tiropar3Masa,
'MStateDep', 'none', 'OutputFcn',6 @tiropar3Salida, 'OutputSel’', [3,4],
'JPattern’',Jp, 'Vectorized',6 'on', 'Events',6 @tiropar3Eventos, 'Stats'

sol=odel5s (@tiropar3, tspan,y0,options,1,0.001) ;

% forma alternativa de llamar al integrador

% [T,Y, tEv, yEv, ev]=odel5s(@tiropar3, tspan,y0,options,1,0.001);

% resultados del céalculo de eventos

sol.xe tiempos en los que se ha producido el evento

disp('Tiempos de corte con y(4)=0: "), disp(num2str(sol.xe));

o)

% sol.ye vector de estado en los instantes del evento

o\

,'ton');

disp('Valores del vector de estado en los eventos: '), disp(num2str(sol.ye));;

)

% sol.ie n’umero del evento que se ha producido

disp ('Eventos que se han producido: '), disp(num2str(sol.ie));
T=tspan (find (tspan<sol.xe(2)));

% la funcion deval calcula la solucion en los tiempos deseados
Y=deval (sol,T) ;

% forma alternativa de llamar al integrador

disp('Ya he terminado!")

% calculo de la matriz de masas
function M=tiropar3Masa(t,m,c)
M=diag([m,m,1,1]1);

% funcidén para controlar la salida de resultados
function status=tiropar3Salida(t,y,flag,m,c)
% se llama a tiropar3Salida() en cada punto de salida y
% esta funcidén se encarga de llamar a odeplot
status=0;
switch flag
case 'init'
disp(['Entrando en salidaTiropar3 por primera vez']);
odeplot (t,y, 'init'");
case 'done'
disp(['Entrando en salidaTiropar3 por uUltima vez']);
odeplot ([], [], 'done');
case ''
% puede haber resultados para mas de un tiempo de salida
for i=l:length(t)
disp(['Entrando en salidaTiropar4 para t=', num2str(t(i))]);
odeplot (t(i),y(:,1));
end
end

Capitulo 6: Programacion de MATLAB pagina 91

53.
54.
55.
56.
57.
58.
59.
60.
61.
62.

63.

)

% funcion para controlar los eventos
function [valor,esFinal,direccion]=tiropar3Eventos(t,y,m,c)

if y(2)>0
valor = y(4); % unico valor que se controla
esFinal = 0; % no termina la integracidén al llegar al suelo
direccion = 1; % llegar al suelo en direccidén ascendente

else
valor = y(4);
esFinal = 1; % termina la integracidén al llegar al suelo
direccion = -1; % llegar al suelo en direccidén descndente

end

Por otra parte, el fichero tiropar3.m que evalta la ecuacion diferencial es el siguiente:

1.

~N oUW

function dy=tiropar3(t,y,m,c) % version vectorizada
fac=-c*sqrt(y(1l,:)."2+y(2,:).%2);

dy=zeros (size(y));

dy(l,:)=fac.*y(1l,:);

dy(2,:)=fac.*y(2,:)-9.8%m;
dy (3, :)=y(1,:);
dy (4,:)=y(2,:);

Sobre las funciones definidas en el fichero tiropar3Main.m se pueden hacer los siguientes comenta-

rios:

1.

El programa se ha definido como funcion sin argumentos (linea 2) y no como fichero de co-
mandos. La razén es para poder utilizar sub-funciones (funciones definidas en el mismo fi-
chero), que no estan permitidas en los ficheros de comandos.

Las condiciones iniciales (linea 7) se parecen a las de los ejemplos anteriores, pero el movi-
miento comienza con una ordenada negativa (por debajo del origen). Este hecho se utilizara
en relacion con los eventos.

Las ecuaciones diferencias se suponen en la forma de la ecuacion (14) (M(z,y)y =f(z,y)),
que permite proporcionar mas informacion al integrador. En la linea 9 se define una matriz
dispersa con "unos" en las posiciones correspondientes a los términos distintos de cero de la
matriz Jacobiana del segundo miembro, esto es, a las derivadas parciales distintas de cero del
vector f(z,y) respecto al vector y. El integrador edel5s va a calcular dichas derivadas numéri-
camente y la informacion contenida en la matriz Jp sobre los términos no nulos le permite
ahorrar mucho trabajo.

La estructura options, definida en las lineas 10-12, tiene una gran importancia, pues controla
los aspectos fundamentales de la integracion. Como ya se ha dicho, sus valores se establecen
en la forma de parejas parametro/valor. Los primeros argumentos son los valores de las tole-
rancias de error relativo y absoluto, ya comentados previamente. A continuacion se comentan
las restantes opciones. En los nombres de los pardmetros MATLAB no distingue entre ma-
yusculas y minusculas y no hace falta escribirlos con todas las letras: basta poner suficientes
letras para evitar la ambigiiedad en el nombre. Por ejemplo, MStateDep y mstate seran consi-
derados como equivalentes a MStateDependence. Es conveniente sin embargo que la eleccion
de estos nombres no afecte a la legibilidad del c6digo.

La tercera pareja de argumentos de options declara que la matriz de masas (parametro Mass)
es definida por la funcion tiropar3Masa, cuya referencia se da como valor. Otra posibilidad
es la que se ha utilizado antes: cuando la matriz de masas es constante, se calcula previamente
su valor y se incluye el nombre de la variable como valor de este argumento. La linea 11 in-
cluye el argumento MStateDep, también relacionado con la matriz de masas, que establece el
tipo de dependencia de dicha matriz respecto al vector de estado y. Sus posibles valores son
none, weak y strong. Otro argumento relacionado con la matriz de masas, no utilizado en este
ejemplo, es MvPattern, cuyo valor debe ser una matriz sparse analoga a Jp, utilizada para de-

Aprenda Matlab 7.0 como si estuviera en Primero pagina 92

10.

finir la dependencia de los elementos de la matriz de masas respecto al vector y (su sparsity
pattern).

El parametro QutputFcn permite al usuario controlar la salida de resultados a medida que se
van haciendo los célculos y no solamente al final. El valor de este parametro es una referencia
de funcion (@tiropar3Salida) que sera utilizada por el integrador varias veces a lo largo de la
integracion. MATLAB dispone de cuatro funciones de salida preprogramadas (odeplot, odep-
has2, odephas3 y odeprint) que pueden ser utilizadas sin mas que pasar como valor una refe-
rencia a ellas. En este caso se ha programado una funcion de salida llamada tiropar3Salida
que estd definida a partir de la linea 34. Esta funcion se llama al inicio de la integracion, en
cada instante de salida de resultados y al terminar la integracion. El pardmetro QutputSel
permite definir los elementos del vector de estado en los que se estd interesado. En este caso
se le han pasado como valor el vector [3, 4], lo que hara que la funcién de salida reciba las
posiciones y no las velocidades (que estan en las dos primeras posiciones del vector de estado

y)-

La Jacobiana de la funcion f(#,y) respecto al vector y tiene una gran importancia, sobre todo
en problemas stiff. El usuario puede proporcionar una Jacobiana al integrador, pero si no lo
hace éste la calcula numéricamente. El usuario puede también proporcionar una referencia de
funcién que calcule una Jacobiana analiticamente (de modo exacto o aproximado) por medio
del parametro Jacobian. Cuando no se utiliza este parametro, el integrador calcula la Jacobia-
na numéricamente y también en este caso el programador puede ayudar a acelerar mucho los
calculos. El parametro JPattern, ya comentado previamente, permite indicar al integrador qué
elementos de la Jacobiana son distintos de cero. Ademads, como una Jacobiana contiene n> de-
rivadas parciales y cada derivada se calcula a partir de la diferencia entre dos evaluaciones de
f(z,y), este calculo puede ser muy costoso para valores grandes de n. El parametro JPattern
permite reducir el calculo de derivadas numéricas. Ademas, el parametro Vectorized permite
realizar este calculo mucho mas rapidamente utilizando las capacidades vectoriales de MA-
TLAB; sus posibles valores son on y off. Mas adelante se verd como se ha vectorizado en este
ejemplo la funcion tiropar3.

El penualtimo parametro que aparece en la estructura options es Events. Este parametro puede
tener una gran importancia en simulacion. En este contexto, se llaman eventos a todas aque-
llas circunstancias que pueden acaecer a lo largo de la simulacion y que cambian su naturaleza
u obligan a tomar una decision. Por ejemplo, si se estd simulando el movimiento de un vehi-
culo todo terreno, cada vez que las ruedas pierden o vuelven a tomar contacto con el suelo se
produce un cambio en el sistema a simular, pues se eliminan o afiaden ecuaciones y grados de
libertad. Los eventos de MATLAB permiten detectar semi-automaticamente estas situaciones
y tomar las medidas adecuadas. En el ejemplo de tiro parabdlico que se estd considerando el
unico evento que se va a considerar es que el proyectil llegue al suelo, es decir, que su coor-
denada y se anule (se supone que el suelo es la superficie y=0). El valor del pardmetro Events
es la referencia de la funcion de usuario que se ocupara de gestionarlos.

El ultimo pardmetro de options es Stats, que cuando esta en on hace que el integrador calcule
e imprima las estadisticas sobre el trabajo que ha sido necesario en la integracion.

La linea 13 contiene la llamada al integrador, en este caso a la funcion odelSs. La linea 15
muestra —comentada, para que no se ejecute— una forma alternativa de realizar esta llamada.
En el primer caso, que fue una novedad de la version 6.0 de MATLAB, el integrador entrega
todos los resultados como campos de una estructura, que en este caso se ha llamado sol. El lis-
tado del programa indica los significados de los campos mas importantes: sol.x es un vector
con los tiempos en los que se devuelven resultados y sol.y es una matriz cuyas filas son los re-

Capitulo 6: Programacion de MATLAB pagina 93

11.

12.

13.

14.

15.

sultados correspondientes. Si estan activados los eventos hay tres campos adicionales xe, ye e
ie, que representan respectivamente los instantes de tiempo en que se han producido los even-
tos, los valores del vector de estado en esos instantes de tiempo, y el evento concreto (pueden
controlarse varios eventos diferentes) que se ha producido en cada uno de esos instantes.

Tanto en la linea 13 como en la 15 aparecen detras de options dos argumentos adicionales
que representan la masa m (1) y el amortiguamiento ¢ (0.001). Todos los argumentos que apa-
rezcan detrds de options son siempre considerados argumentos adicionales por el integrador,
que se limita a recogerlos y pasarselos a todas las funciones de usuario tales como tiropar3,
tiropar3Masa, etc. El integrador es un mero transmisor de argumentos entre el programa
principal y las restantes funciones de usuario. Es muy importante que fodas las funciones de
usuario recojan estos argumentos adicionales aunque no los necesiten, pues en otro caso se
obtiene un error de insuficiente numero de argumentos. Obsérvese que estos argumentos apa-
recen en las lineas 30, 34 y 54.

Los integradores de MATLAB pueden dar el resultado por medio de una estructura (como en
la linea 13) o por medio de diversos valores de retorno (como en la linea 15 y en los ejemplos
anteriores). Se utiliza una u otra forma en funcién del nimero de valores de retorno que espe-
ra recibir el usuario.

Cuando el resultado del integrador se recibe por medio de una estructura, los instantes en los
que se proporcionan resultados no coinciden con los valores intermedios de tspan, sino que
son valores elegidos por el integrador, al igual que en el caso en que tspan solo contenga el
instante inicial y el final (tspan=[tini, tend];). Si se desean resultados en intervalos igual-
mente espaciados elegidos por el usuario, puede utilizarse la funcion deval (ver linea 25), que
fue otra novedad de MATLAB 6.0. Si a esta funcidn se le pasa la estructura solucion sol y un
vector con los instantes de tiempo en los que se desea solucion, deval devuelve una matriz cu-
yas filas son el vector solucion en dichos instantes de tiempo.

La linea 30 muestra el comienzo de la funcién tiropar3Masa, que calcula la matriz de masas
del sistema de ecuaciones diferenciales (14). Es muy importante que los argumentos sean los
que se indica en esa linea. El argumento t aparece porque se supone que la matriz M varia con
el tiempo y no con el vector de estado y. Si se considerara constante (como en realidad es en
este caso) se podia haber pasado directamente como valor del parametro Mass en odeset. Con
MStateDep igual a none se ha indicado que la matriz de masas no depende de y, y por eso di-
cho vector no se pasa como argumento. Por otra parte, como a todas las funciones de usuario,
el integrador le pasa los dos argumentos adicionales m=1 y ¢=0.001 que aparecen al final de
la llamada al integrador en la linea 13.

La funcion tiropar3Salida en la linea 34 tiene un tercer argumento llamado flag (sefial, marca
o bandera). A lo largo de la integracion del programa esta funcion es llamada con tres valores
diferentes de flag. Al principio de todo se llama con flag igual a 'init’; después, a lo largo de
la integracion, se llama en cada instante de salida con flag igual a la cadena vacia ' ’; cuando
la integracion ha terminado se llama con flag igual a 'done’ para que el usuario pueda hacer
las ultimas operaciones antes de terminar. El programador debe decidir el uso que hace de es-
tas posibilidades. En este caso, la funcion tiropar3Salida 1o Gnico que hace es imprimir un
mensaje por la consola y llamar a la funcioén odeplot, que es una de las funciones estandar de
MATLAB. Es importante observar el cddigo de las lineas 46-50: este cddigo es necesario
porque el integrador consigue dar pasos tan grandes que puede haber varios puntos de salida
dentro de un unico paso. En este caso, el argumento t es un vector con los diversos tiempos de
salida e y es una matriz cuyas columnas son los vectores de estado en cada punto de salida. Si
no se introduce el bucle for de la linea 47 el programa da error.

Aprenda Matlab 7.0 como si estuviera en Primero pagina 94

16. Llega el momento de hacer unos comentarios sobre la funciéon que maneja los eventos. El in-
tegrador necesita del usuario para detectar los eventos que se pueden producir a lo largo de la
simulacion. Para MATLAB un evento es siempre una variable cuyo valor pasa por cero,
bien en direccion ascendente o descendente. Esa variable puede ser una coordenada, una dis-
tancia, una fuerza, ... Si en vez de hacerse cero tiene que alcanzar un valor determinado, bas-
tard controlar la diferencia correspondiente. El usuario debe decir pues al integrador qué valo-
res tiene que controlar. Esto se hace por medio de los valores de retorno de la funcion que
gestiona les eventos, en este caso tiropar3Eventos (ver linea 54). El primer valor de retorno,
valor, es la variable cuyo paso por cero hay que vigilar (puede ser un vector de valores a con-
trolar). El segundo valor de retorno, esFinal, indica si la ejecucion se debe terminar o no
cuando se produzca el evento, lo cual dependera del caso estudiado y del proposito del pro-
gramador. El tercer y ultimo valor de retorno, direccion, indica como es el paso por cero, si
con derivada positiva o creciendo (valor 1), o con derivada negativa o decreciendo (valor —1).
La funcion tiropar3Eventos muestra un ejemplo de como se generan estos valores: el valor a
controlar es la ordenada del movil, que viene dada por y(4). El evento es final cuando el mo-
vil impacta con el suelo en su trayectoria descendente (velocidad y(2)<0), pero no cuando esta
subiendo (velocidad y(2)>0). De hecho, se produce un primer evento al poco tiempo de ser
disparado (ya que parte de un punto con ordenada negativa), pero este evento no detiene la
simulacion. El segundo evento si la para, pues se produce con trayectoria descendente.

17. Finalmente, es necesario explicar la funcion tiropar3, que se incluye en la pagina 91. Dicha
funcién esté vectorizada, esto es, es capaz de recibir como argumento varios vectores de esta-
do (columnas de la matriz y) y calcular los correspondientes valores del vector de derivadas,
que seran las columnas de la matriz dy. Para vectorizar esta funcion se ha hecho uso de los
operadores (.*) y (.*). Cada fila de la matriz resultado dy se calcula con una Unica instruccion,
en funcion de las filas de la matriz y. Esta simple modificacioén (en otros ejemplos puede ser
mucho mas complicada) hace que los calculos sean mucho mas eficientes.

No se puede entrar con mas detenimiento en estas cuestiones especializadas. Para el lector interesa-
do en estos problemas se recomienda acudir a la ayuda de MATLAB, concretamente al tema titula-
do Initial Value Problem Solvers, accesible desde la ventana principal del Help de MATLAB en
Mathematics, Differential Equations, Initial Value Problems for ODEs and DAEs. También pue-
de ser muy util consultar la informacién que aparece sobre MATLAB ODE Suite, en la seccion de
Printable Documentation (PDF), en la ventana de Help. Estos documentos contienen una explica-
cion muy detallada de todas las posibilidades de las funciones referidas, asi como numerosos ejem-
plos.

6.10.4.LAS FUNCIONES EVAL, EVALC, FEVAL Y EVALIN

Estas funciones tienen mucho que ver con las cadenas de caracteres, ya que necesitan la flexibilidad
de éstas para alcanzar todas sus posibilidades. Las funciones para manipular cadenas de caracteres
se veran en un proximo apartado.

La funcion eval(’cadena de caracteres’) hace que se evallie como expresion de MATLAB el texto
contenido entre las comillas como argumento de la funcion. Este texto puede ser un comando, una
féormula matematica o -en general- cualquier expresion valida de MATLAB. La funcion eval debe
tener los valores de retorno necesarios para recoger los resultados de la expresion evaluada.

Esta forma de definir macros es particularmente util para pasar nombres de funcidn a otras funcio-
nes definidas en ficheros *.m.

El siguiente ejemplo va creando variables llamadas Al, A2, ..., A10 utilizando la posibilidad de
concatenar cadenas antes de pasarselas como argumento a la funcién eval:

Capitulo 6: Programacion de MATLAB pagina 95

for n = 1:10
eval(['A',num2str(n),' = magic(n)'])
end

La funcion eval() se puede usar también en la forma eval("tryString’, 'catchString’). En este caso se
evalua la cadena "tryString’, y si se produce algun error se evalua la cadena 'catchString’'. Es una
forma simplificada de gestionar errores en tiempo de ejecucion.

La funcién T=evalc() es similar a eval() pero con la diferencia de que cualquier salida que la expre-
sion pasada como argumento hubiera enviado a la ventana de comandos de MATLAB es capturada,
y almacenada en una matriz de caracteres T cuyas filas terminan con el caracter "\n'.

Por su parte la funcion feval sirve para evaluar, dentro de dicha funcidn, otra funcion cuya referen-
cia o cuyo nombre contenido en una cadena de caracteres se le pasan como primer argumento. Es
posible que este nombre se haya leido desde teclado o se haya recibido como argumento. A la fun-
cion feval hay que pasarle como argumentos tanto la referencia o el nombre de la funcion a evaluar
como sus argumentos. Por ejemplo, si dentro de una funcion se quiere evaluar la funcion calcu-
lar(A, b, ¢), donde el nombre calcular o la referencia @calcular se envia como argumento en la
cadena nombre, entonces feval(nombre, A, b, c) equivale a calcular(A, b, c).

Finalmente, la funcion evalin(ws, 'expresion’) evaliia 'expresion’ en el espacio de trabajo ws. Los
posibles valores de ws son 'caller’y 'base’, que indican el espacio de trabajo de la funcion que lla-
ma a evalin o el espacio de trabajo base. Los valores de retorno se recogen del modo habitual.

6.11. Distribucion del esfuerzo de calculo: Profiler

El profiler es una utilidad que permite saber qué tiempo de calculo se ha gastado en cada linea de
una funcion definida en un fichero *.m o en general de un programa de MATLAB. El profiler tam-
bién puede utilizarse con ficheros de comandos *.m, es decir con programas que no sean funciones.
Permite asimismo determinar el nimero de llamadas a dicha funcién, las funciones que la han lla-
mado (parent functions), las funciones llamadas por ella (child functions), etc.

El profiler mejora la calidad de los programas, pues permite detectar los “cuellos de botella” de una
aplicacion y concentrar en ellos los esfuerzos para mejorar su eficiencia. Por ejemplo, sabiendo el
nimero de veces que se llama a una funcion y el tiempo que cuesta cada llamada, se puede decidir
si es mejor emplear mas memoria en guardar resultados intermedios para no tener que calcular va-
rias veces lo mismo.

El profiler ha sido mejorado en las distintas versiones d¢ MATLAB, disponiendo de una interface
de usuario propia (ver Figura 33 y siguientes). Con el profiler se puede medir el tiempo (en centé-
simas de segundo) empleado en cada linea del fichero, en cada llamada a una funcion e incluso en
cada operador del lenguaje.

Para arrancar la ventana del profiler se puede ejecutar el comando Profiler en el ment Desktop,
utilizar el mena Start/Matlab o simplemente teclear profile viewer en la ventana de comandos. El
resultado sera que se abre la ventana que se muestra en la Figura 33.

Ahora se debe introducir en la ventana Run this code el nombre de la funcion o fichero *.m que se
quiere analizar y después clicar en el boton Start Profiling. Inmediatamente el programa empieza a
ejecutarse bajo la supervision del profiler, lo cual se sabe porque en la parte superior derecha de la
ventana aparece una marca verde y comienza a correr el tiempo. Al acabar la ejecucion se muestra
el resumen de resultados (Profile Summary), que para el programa tiroparMain4.m explicado en el
apartado 6.10.3, es el mostrado en la Figura 34. En esta figura se muestra un informe del n° de veces
que ha sido llamada cada funcion y del tiempo total que se ha empleado en ella.

Aprenda Matlab 7.0 como si estuviera en Primero

pagina 96

_inl =lol =l
Fle Edt Debun Desttop widw Help ~ i B B T Al &
4+ Cd| & A - Cd |8 A
Saret Profiieg | Fun thin coder | ﬂ Ommm."“ 3-[?“«"’0] Foun his code. [IlwﬂMﬂl‘ :J B Frotie e 3 soc
k Profile Summary
Profiler for]:mprwing Paerformance Generated U2-Mey-2005 12:84:55 using ceal time.
One way £o improve the performance of your E-files is using profiling tocls. MATLAN i then letal T non et l:::“(;:: Z‘f::” g
provides the H-file Profiler, & graphical user interface that 1s based on the results v : |
returned hy the profile funccion. Use the Profiler to help yoo decermine where you £ A A B0iEs —‘P
cAn modify FOUT code ©o make pATTOTMANCE IMPEOVEmeRTS. sizsparfaind
Far drtaila on how to use the Profiler, ace the Profiler documentation. oodelss 2 z.075 = 0.853 = -
LiropardSalida 13 1.797 & 0.063 = [
adepine a3 1.703 = 1,469 —
funfun) privare\ndefinalize 2 0.266 a 0.156 a []
funfun) private)cdesrguments z ©.141 = 0,125 8 1
setdiff L 0.108 = 0.078 = 1
peuplut 4 0.109 » 0.000 =]
nRUp Nt Ohaeree Aeraleer P ior | 0.10% 2 0,000 I
graphicsiprivateicls z 0,108 = 0016 = I
funfun) privatelntrplss @1 o0 = 0016 = 1
LEpmaL 185 0.078 & 0.078 =]
fmEaEy a7 0.078 a 0,083 a I
funfun) privare) ade jacohisng 2 0.063 n 0,016 a | =l
& Es
Figura 33. Ventana inicial del Profiler. Figura 34. Profile Summary para tiroparMain4.
1ol =10l x|
File Edt Debug Desitop windiw Help - File Edt Debug Desitop window Heip -
- =4S M
3-[?“«"’0] Foun his code. [IlwﬂMﬂl‘ :J B Frotie e 3 soc SiuleulIv] Foun s cude. [IlwﬂMﬂlG ﬂ 'ﬁulhl_.‘ﬂm:
tiropard4salida (88 calls, 1.797 sec) Fanvtion Listing
Genersted UZ-May-ZO0h 12:33:06 using Ceal time. TR e
B-function in £ile F:)ldocs)ManusleshHat iab) st Lah 7o) \tiroparsialida.m : e
c a pdnw T paring muleipl s
[COpF Ta new windnw for_comparing muicipie russ) s i St
Fefrezh
¥ Show parent files ¥ Show busy lines F Show child files
I Show H-Linc reauiea P Show #11e covernge 2 Show #11e liacing b a
Parenta [ealling Tuneriona) 0.01 889 __ & atatuse0
w__1
Function Hame Funetion Type Calls B8 __ 8 oase 'imiet
.03 2__a ele
v i
funfon) privetelodgdinnlizg | B-Zunceion * i_1 dizp (['Enteande en salidaTizopard por primers vez']):
odelss A-function By 0 I_1 udeplotic,y, "inic')
w1z case ‘done’
Lines where the most time was spent 2 _a dispi[‘Entrands en salideTizopard por dlvima wez']):
0.0 2 _m ndepinri[],[], denet)
- B4 _15 waze '
Total 5 13
Lo So AL e Tima || S Elos % puede lsber resultadvs para mas de un Cieapo de zalida
v4 _at for 1al:lengthic)
s ateplan|e(i), ¥(:,2]02) 1.406 = 0.1 0.03 8 __18 disp(['Encrando en salidaTiropard paca te',mumiscr(cii}l]ls
1 ogeplOE T, Y, ‘1niE"] z 0.219 = 12.2% W -4 M|_1 “meplar (n(E) A1)
B _28 end
14 odeplot{[].[], 'done') : 2 0,078 a E:1 1 B4 21 end
18 displl 'Entrandy en salidaTizop... | &9 .1l a B . | = hd
A 3

Figura 35. Informacion sobre la funcion tiropar4salida.

Figura 36. Informacion adicional sobre tiropar4salida.

Clicando sobre el enlace a la funcion tiropar4salida se muestra la informacion de la Figura 35 y de
la Figura 36. En la parte de arriba de la ventana (Figura 35) se muestra el nimero de veces que ha
sido llamada cada linea de codigo y el tiempo empleado en ella. En la parte inferior de la ventana
(Figura 36) aparece una informacion similar referida al codigo fuente del fichero. Las sentencias
que se han llevado mas tiempo de CPU aparecen coloreadas en un tono rosa de intensidad creciente.

Una informacion particularmente interesante es la proporcionada bajo el epigrafe M-Lint results,
(no mostrados en las figuras) que contiene sugerencias para mejorar la eficiencia del programa. Por
ejemplo, se avisa de la existencia de variables que se calculan pero no se utilizan posteriormente, de

la existencia de alternativas mas eficientes, etc.

El profiler proporciona también informacion sobre la funcion padre (la que la ha llamado) y las

funciones hijas de cada funcion.

Otra forma de llamar al profiler es por medio de la funcion profile, que se intercala en el codigo
fuente en la forma (se supone que estas lineas forman parte de un fichero *.m):

profile on -detail 'builtin';

sol=odel5s (@tiropard, tspan2,y0,options,1,0.001);

profile viewer;

Capitulo 6: Programacion de MATLAB pagina 97

donde la primera linea activa el profiler a la vez que define el grado de detalle que se desea y el
tipo de tiempo que se desea medir. La segunda linea es una llamada a la funcion odel5s que a su
vez llama a muchas otras funciones y la tercera linea detiene el profiler y le pide un informe con los
resultados calculados. Los informes presentados por el Pprofiler son similares a los de la Figura 34
y siguientes, aunque en este caso no se muestra un informe total sobre la funcion tiroparMaind,
sino solo sobre la parte de codigo que esté entre profile on y profile viewer.

Existen dos posibles grados de detalle respecto a la informacion que se le pide al profiler:

'mmex' determina el tiempo utilizado por funciones y sub-funciones definidas en ficheros
*my *.mex. Esta es la opcion por defecto.
'builtin' como el anterior incluyendo las funciones intrinsecas de MATLAB.

Otros posibles comandos relacionados con el profiler de MATLAB son los siguientes:

profile viewer abre la ventana del profiler mostrada en la Figura 34.

profile on activa el profiler poniendo a cero los contadores

profile on —detail level =~ como el anterior, pero con el grado de detalle indicado

profile on —history activa el profiler con informacion sobre el orden de las llamadas a
las funciones (puede registrar hasta 10000 llamadas)

profile off desactiva el profiler sin poner a cero los contadores

profile resume vuelve a activar el profiler sin poner a cero los contadores

profile clear pone a cero los contadores

s = profile('status') muestra una estructura conteniendo los datos del profile

stats = profile('info") detiene el profiler y muestra una estructura con los resultados (con-

sultar el Help para mas informacion sobre las variables miembro de
estas estructuras)

El profiler se puede aplicar a funciones y a ficheros de comandos. La ejecucion de un programa con
el profiler puede ser bastante mas lenta que sin €l, por el trabajo extra que conlleva.

Aprenda Matlab 7.0 como si estuviera en Primero pagina 98

7. INTERFACES DE MATLAB CON OTROS LENGUAJES
7.1. Interfaces de MATLAB con DLLs genéricas

7.1.1. INTRODUCCION

Una libreria compartida es una coleccion de funciones ejecutables listas para ser utilizadas en una o
mas aplicaciones. En este sentido, MATLAB permite utilizar librerias externas que se hayan gene-
rado en sistemas MS-Windows y Linux.

Los ficheros fuente de la libreria se precompilan y ensamblan, y de este modo se obtiene un fichero
con la extension ".dIl" (dynamic link library) en MS Windows o ".so" (shared object) en UNIX y
Linux. En tiempo de ejecucion de la aplicacion que las va a utilizar las funciones de la libreria son
cargadas en memoria y ejecutadas.

MATLAB permite usar las funciones de estas librerias programadas en C. El acceso a las funciones
se realiza a través de una interface de linea de comandos. Esta interface ofrece la posibilidad de
cargar una libreria externa en MATLAB y acceder a cualquiera de las funciones definidas en dicha
libreria. Aunque los tipos de datos son diferentes en MATLAB y en C, en muchos casos es posible
pasar los tipos de MATLAB a C sin tenerse que preocupar de la conversion de datos, porque MA-
TLAB la realiza de forma automaética.

Esta interface permite también usar funciones programadas en otros lenguajes distintos de C siem-
pre que dichas funciones tengan una interface con C. Por ejemplo, es posible llamar a una DLL
programada en Visual Basic si existe un fichero de declaraciones C para dicha libreria.

7.1.2. CARGAR Y LIBERAR LAS LIBRERIAS DE MEMORIA

Para que MATLAB tenga la posibilidad de acceder a una funcion externa de una libreria es necesa-
rio en primer lugar cargar la libreria en memoria. Una vez cargada, ya se puede llamar a cualquiera
de sus funciones. Cuando la libreria ya no se necesita es conveniente borrarla para liberar memoria.

Para cargar una libreria en MATLAB se usa la funcion loadlibrary. La sintaxis de la funcion es la
siguiente:
>> loadlibrary('shrlib', 'hfile')

donde shrlib es el nombre de la libreria y hfile es el nombre del fichero que contiene la declara-
cion de las funciones (fichero de encabezamiento o header).

Como ejemplo se va a cargar en memoria la libreria de MATLAB libmx que contiene las funciones
mx (funciones en C que permiten trabajar con los mxArrays, es decir, con cualquiera de las varia-
bles de MATLAB). En la primera sentencia mostrada a continuacion se guarda en la variable hfile
la direccion del fichero matrix.h que contiene la declaracion de las funciones mx. La segunda sen-
tencia carga en memoria la libreria libmx.dIl.

>> hfile = [matlabroot '\extern\include\matrix.h'];
>> loadlibrary('libmx', hfile)

Si ya no se necesitan estas funciones se puede liberar la memoria mediante la funcion unloadlibra-
ry, en la forma:

>> unloadlibrary libmx
La funcion libisloaded devuelve un 1 (true) si la funcion esta cargada y 0 (false) si no lo esta. Esta
funcioén se podria utilizar en la forma siguiente:

if libisloaded('libmx')==1

Capitulo 7: Interfaces de Matlab con otros lenguajes pagina 99

7.1.3. CONSEGUIR INFORMACION ACERCA DE LA LIBRERIA

Para saber qué funciones tiene disponibles una libreria cargada en memoria se pueden usar las dos
siguientes funciones:

>> libfunctions ('libname')
>> libfunctionsview ('libname')

La principal diferencia es que libfunctions muestra la informacion en la ventana de comandos de
MATLAB y libfunctionsview muestra la informacion en una ventana nueva.

Si se usa libfunctions con el nombre de la libreria como tinico argumento MATLAB devuelve los
nombres de las funciones de la libreria sin especificar sus argumentos. Estos son mostrados si se
utiliza la opcion "—full". Los tipos de datos que acompanan a los argumentos son los tipos de MA-
TLAB correspondientes a los tipos de C. Como ejemplo obsérvese la siguiente respuesta de MA-
TLAB:

>> libfunctions libmx —-full

Functions in library mx:

[int32, MATLAB array, cstring] mxAddField (MATLAB array, cstring)
[cstring, MATLAB array] mxArrayToString (MATLAB array)

Ademés, la funcion libfunctionsview crea una nueva ventana donde muestra toda la informacion de
las funciones disponibles de la libreria.

7.1.4. LLAMADA A LAS FUNCIONES DE UNA LIBRERIA

La funcion calllib sirve para llamar a las funciones de la libreria. Se debe especificar el nombre de
la libreria, el nombre de la funcidn y los argumentos que hay que pasar a dicha funcion:

>> calllib('libname', 'funcname', argl, ..., argN)
El siguiente ejemplo llama a funciones de la libreria libmx:

>>y = rand (4, 7, 2);

>> calllib('libmx', 'mxGetNumberOfElements', vy)
ans = 56
>> calllib('libmx', 'mxGetClassID', vy)

ans = mxDOUBLE CLASS
En el paso de argumentos se deben tener en cuenta las siguientes reglas generales:

— Algunos tipos de argumentos muy utilizados en C, tales como punteros o estructuras prede-
finidas, son muy diferentes a los tipos de datos estindar de MATLAB. En estos casos existe
la opcidn de pasar un tipo de dato estandar de MATLAB y arriesgarse a que MATLAB haga
la conversion, o convertir los datos explicitamente con funciones tales como libstruct y lib-
pointer, que se explicaran mas adelante.

— En C muchos argumentos de entrada se pasan normalmente por referencia. Aunque MA-
TLAB no soporta el paso de argumentos por referencia, es posible en MATLAB crear ar-
gumentos compatibles con las referencias de C.

— Las funciones de C suelen devolver resultados por medio de argumentos pasados por refe-
rencia. En este caso, MATLAB crea valores de retorno adicionales para devolver estos valo-
res.

7.1.5. CONVERSION DE DATOS

La Tabla 2 y la Tabla 3 muestran la equivalencia de tipos de datos entre C y MATLAB.

Aprenda Matlab 7.0 como si estuviera en Primero

pagina 100

Tipo de C (en un ordenador de 32 bit) Tipo equivalente de MATLAB
char, byte int8
unsigned char, byte uint8
short intl6
unsigned short uintl6
int, long int32
unsigned int, unsigned long uint32
float single
double double
char * cstring (1xn char array)
*charf] cell array of strings
Tabla 2. Tipos de datos primitivos de MATLAB.
Tipo de C (en un ordenador de 32 bit) | Tipo equivalente de MATLAB
int * intPtr
*char stringPtr
**char stringPtrPtr
float * singlePtr
double * doublePtr
mxArray * Matlab array
void * voidPtr
void ** voidPtrPtr
type ** typePtrPtr

Tabla 3. Tipos de datos extendidos de MATLAB

Para los tipos primitivos, MATLAB automaticamente convierte cualquier argumento de MATLAB
al tipo de dato C esperado. Por ejemplo se puede pasar un double a una funcion que espera recibir
un integer y MATLAB realiza la conversion. MATLAB también convierte un argumento pasado
por valor a un argumento pasado por referencia, cuando la funcién externa requiere que el argumen-
to sea pasado de esta forma.

Por ejemplo la siguiente funcién C, que permuta dos argumentos pasados por referencia, se ha
compilado en una libreria llamada swapLibrary:

void swap (double *x, double *y) {
double aux = *x;
*y = *y;
*y = aux;
return;

}

Se puede llamar a la funcion de la siguiente manera:

a=1.78; b = 5.42;

calllib('swapLibrary', 'swap', a, b);

Para argumentos del tipo char* se puede pasar un string de MATLAB.

7.1.6. PASO DE ESTRUCTURAS COMO ARGUMENTOS

Para pasar estructuras como argumentos a funciones de C hay que crear las estructuras equivalentes
en MATLAB. Para ello hay que conocer los nombres de los campos y el tipo de dato de cada cam-
po. Si estos datos son conocidos, bien porque se posee la documentacion de la libreria, bien porque

Capitulo 7: Interfaces de Matlab con otros lenguajes pagina 101

se puede encontrar la definicion de la estructura en el fichero de declaraciones de la libreria, se pue-
de construir directamente la estructura equivalente en MATLAB poniendo los mismos nombres a
los campos.

Si no se conoce el nombre y el tipo de los campos existe otra posibilidad. Por ejemplo, al considerar
las funciones disponibles en una libreria se observa la siguiente declaracion:

double addStructFields (c_struct)
En este caso se puede emplear la funcion libstruct de MATLAB, que devuelve un objeto vacio con
una estructura equivalente a la de la estructura de C.

>> s = libstruct('c_struct')

Ahora, con la funcion get se puede averiguar el nombre de los campos:

A continuacion se pueden dar los valores deseados a los campos y llamar a la funcion:

>> s.pl = 476; s.p2 = -299; s.p3 = 1000;
>> calllib('shrlibsample', 'addStructFields', s);

7.1.7. PASO DE ARGUMENTOS POR REFERENCIA

Como se ha comentado anteriormente, MATLAB se encarga de comprobar si los argumentos se han
pasado correctamente y es capaz de convertir un argumento por valor a otro por referencia cuando
s necesario.

En ciertas ocasiones es conveniente utilizar un tipo de dato de MATLAB equivalente a las referen-
cias de C, como por ejemplo:

— Si se desean modificar los datos en los argumentos de entrada.

— Si se esta pasando una gran cantidad de datos a la funcion y no se desea que MATLAB haga
copias de dichos datos (MATLAB sélo saca copias de los argumentos de entrada si son mo-
dificados dentro de la funcion).

— Cuando un argumento de una funcioén tiene mas de un nivel de referencia (puntero a punte-
ro), por ejemplo double **, no es conveniente dejar que Matlab haga la conversion.

En estos casos se puede usar la funcion libpointer de MATLAB, que sirve para construir punteros a
diferentes tipos de datos. Su sintaxis es la siguiente:

>> p = libpointer ('type', 'value')
Esta funcion se entiende mejor por medio de un ejemplo. A continuacidon se muestra una funcién en
C que multiplica por cinco una variable que se ha recibido como argumento pasado por referencia:

double *multDoubleRef (double *x) {
*X *:5;
return x;

}

En MATLAB se puede definir la variable, construir una referencia y verificar su contenido:

>> x = 15;
>> xp = libpointer ('doublePtr', x);
>> get (xp)

Value: 15

DataType: 'doublePtr'

Aprenda Matlab 7.0 como si estuviera en Primero pagina 102

Finalmente se llama a la funcién y se comprueba el resultado:

>> calllib('shrlibsample', 'multDoubleRef', xp);
>> get (xp, 'Value')
ans = 75

7.2. Llamar desde MATLAB funciones programadas en C o Fortran

7.2.1. INTRODUCCION A LOS FICHEROS MEX

Es posible llamar desde MATLAB a funciones programadas en C y en Fortran como si fueran fun-
ciones propias de MATLAB. De este modo, una funcion *.m de MATLAB puede ser sustituida por
una funcidn programada en C o en Fortran que se llama exactamente en la misma forma. Para que
esto sea posible las funciones programadas en C y Fortran han de cumplir una serie de requisitos
que se explican mas adelante. Estas funciones se compilan y se generan librerias compartidas que
son las denominadas funciones MEX. Las funciones MEX son funciones ejecutables "*.dll" 6
"*.s0" que pueden ser cargadas y ejecutadas por MATLAB de forma automatica.

Las funciones MEX tienen varias aplicaciones:
— Evitan tener que reescribir en MATLAB funciones que ya han sido escritas en C o Fortran.

— Por motivos de eficiencia puede ser interesante reescribir en C o Fortran las funciones criti-
cas o que consumen mas CPU del programa.

Las funciones MEX tienen una extension diferente en funcion de los sistemas operativos en que
hayan sido generadas. En la siguiente tabla se puede ver la extension que corresponde a cada siste-
ma operativo.

Sistema operativo Extensién del fichero MEX
Sun Solaris .mexsol
HP-UX .mexhpux
Linux .mexglx
Maclntosh .mexmac
Windows dll (hasta Matlab 7.0)
.mexw32 (desde Matlab7.1)

Tabla 4. Extensiones de los ficheros MEX.

Conviene insistir en que se puede llamar un fichero MEX exactamente de la misma forma que se
llama a un fichero *.m de MATLAB. Ademas, hay que tener en cuenta que si al buscar en el path se
encuentran en el mismo directorio un fichero MEX y un fichero *.m con el mismo nombre, el fiche-
ro MEX tiene precedencia y es el que se ejecuta.

7.2.2. CONSTRUCCION DE FICHEROS MEX

La primera vez que se crea un fichero MEX en un ordenador, hay que comenzar configurando el
compilador que se va a utilizar. Esto se realiza tecleando en la consola de MATLAB:

>> mex -—-setup

MATLAB responde de la forma siguiente:

Please choose your compiler for building external interface (MEX) files:
Would you like mex to locate installed compilers [y]/n?

Si se contesta afirmativamente, MATLAB localiza los compiladores instalados en el ordenador.
Después pide que se seleccione el compilador que se desea utilizar:

Select a compiler:

Capitulo 7: Interfaces de Matlab con otros lenguajes pagina 103

] Compag Visual Fortran version 6.6 in C:\ARCHIVOS DE PROGRAMA\MICROSOFT VISUAL STUDIO

] Lcc C version 2.4 in C:\MATLAB7\sys\lcc

] Microsoft Visual C/C++ version 7.0 in C:\Archivos de programa\Microsoft Visual Studio .NET
] Microsoft Visual C/C++ version 6.0 in C:\Archivos de programa\Microsoft Visual Studio

] None

m

Una opcion que siempre va a funcionar es seleccionar el compilador de C que incorpora MATLAB
(Lee, es decir, la opcion 2). MATLAB pide que se confirme la eleccion y a continuacidon configura
el compilador:

Compiler: 2

Please verify your choices:

Compiler: Lcc C 2.4

Location: C:\MATLAB7\sys\lcc

Are these correct?([y]l/n): y

Try to update options file: MathWorks\MATLAB\R14\mexopts.bat

From template: C:\MATLAB7\BIN\WIN32\mexopts\lccopts.bat

Done

NOTA: Conviene tener en cuenta que hasta la version 7.1 de MATLAB la extension de los ficheros
MEX era ".dll". A partir de la version 7.1 es ".mexw32". Esto quiere decir que los ficheros MEX

generados por MATLAB 7.1 no podran ser ejecutados por versiones anteriores. Para mantener la
compatibilidad se debe utilizar la opcion -output con la extension ".dll" en el nombre del fichero.

La sintaxis del comando para compilar y crear un fichero MEX a partir de lo que se va a llamar un
fichero C-MEX (un fichero C que cumple las condiciones necesarias para poder crear con ¢l un
fichero MEX) es la siguiente:

>> mex filename.c —-output filename.dll

El resultado de esta operacion es un fichero MEX que en MS Windows se llama filename.dll y que
se almacena en el directorio actual.

Como es facil de imaginar hay diversas opciones que permiten modificar las etapas de compilacion
y linkado de las funciones. Las opciones principales son mostradas en la Tabla 5.

Opcién Funcién

-C Soélo compila no linka

-g El ejecutable incluye informacién para depurar la funcion
-0 Se optimiza el ejecutable

-outdir <name> Se indica el directorio donde se guarda la funcion

-output <name> | Permite cambiar el nombre del fichero mex

-V Se saca por pantalla cada paso del compilador
Tabla 5. Opciones de la utilidad mex.

7.2.3. CREACION DE FICHEROS MEX EN C

El codigo fuente de un fichero MEX programado en C tiene dos partes. La primera parte contiene el
cddigo de la funcion C que se quiere implementar como fichero MEX. La segunda parte es la fun-
cién mexFunction que hace de interface entre C y MATLAB.

La funcion mexFunction tiene cuatro argumentos: prhs, nrhs, plhs y nlhs. Estos argumentos tie-
nen los siguientes significados:

1. prhs es un vector de punteros a los valores de los argumentos de entrada (right
hand side arguments) que se van a pasar a la funcion C.

2. nhrs es el numero de argumentos de entrada de la funcion.

Aprenda Matlab 7.0 como si estuviera en Primero pagina 104

3. plhs y nlhs son analogos pero referidos a los argumentos de salida (left hand side
arguments).

Antes de seguir adelante con esta explicacion es conveniente decir algo sobre los mxArrays, que los
unicos objetos con los que trabaja MATLAB. Todos los tipos de variables de MATLAB (escalares,
vectores, matrices, cadenas de caracteres, estructuras, vectores de celdas, etc.) son mxArrays. Para
cada mxArray MATLAB almacena el tipo, las dimensiones, los datos, si es real o complejo (para
datos numéricos), el nimero de campos y sus nombres para las estructuras, etc. MATLAB dispone
de un gran niimero de funciones C para trabajar con mxArrays, que pueden encontrarse buscando
"MX Array Manipulation (C)" en el Help. Algunas de estas funciones se deben utilizar para cons-
truir la mexFunction, tal como se explica a continuacion.

7.2.4. EJEMPLO DE FUNCION MEX PROGRAMADA EN C

Una funcion de MATLAB particularmente ineficiente es la funcion cross, que calcula el producto
vectorial de dos vectores. Dicha funcion se utiliza en la forma:

>> ¢ = cross(a,b);

Los factores a y b deben ser vectores de dimension 3, y también el resultado ¢ es un vector de di-
mension 3. Da igual que sean vectores fila o columna.

El siguiente programa compara tres funciones para calcular el producto vectorial de vectores: la
funcién cross de MATLAB, la funcion prodVect.m y la funcion prodVectC.c. La funcion prod-
Vect.m se ha programado con MATLAB de la forma siguiente:

function c=prodVect (a,b)

c=zeros (3,1);

c(l)=a(2)*b(3)-a(3)*b(2);
)=a (3) *b (1) -a (1) *b(3);

c(2)=a
c(3)=a(l)*b(2)-a(2)*b(1);

Por su parte, la funcion prodVectC.c es una funcion C que se va a ejecutar como fichero MEX. A
continuacion se muestra el contenido del fichero prodVectC.c, que contiene tanto la funcidén que
calcula el producto vectorial como la mexFunction de interface entre C y MATLAB:

// fichero prodvVectC.c
#include "mex.h"

void prodVectC (const double* a, const double* b, double* c) ({

c[0] = a[l]l*bl2]-a[2]*b[1];
c[l] = al2]*b[0]-al0]*b[2];
cl[2] = al0]*b[1]-a[l]*b[O];

}

// This function will be called by Matlab in the form c = prodVectC(a,b);
void mexFunction(int nlhs, mxArray *plhs[], int nrhs, const mxArray *prhs[]) {

double *a, *b; // inputs

double *c; // outputs

// Check for proper number of arguments

if (nrhs != 2) {

mexErrMsgTxt ("Error in number of inputs.");
} else if (nlhs != 1) {

mexErrMsgTxt ("Error in number of outputs");
}
// Create matrix for the return argument
plhs[0] = mxCreateDoubleMatrix (3, 1, mxREAL);
// Assign pointers to each input and output
a = mxGetPr (prhs[0]); b = mxGetPr (prhs[1]);
c = mxGetPr (plhs[0]);
// Call the function written in C
prodVectC(a,b,c);

Capitulo 7: Interfaces de Matlab con otros lenguajes pagina 105

El siguiente programa de MATLAB utiliza las funciones tic y toc para medir los tiempos con las
tres formas de realizar el producto vectorial:

% fichero pruebaMEX.m
clear all
n=50000;

% Se determina la eficiencia del producto vectorial de Matlab
tic
s=0;
for i=l:n
a=rand(3,1); b=rand(3,1);
c=cross(a,b);
s=s+norm(c) ;

or i=l:n
a=rand(3,1); b=rand(3,1);
c=prodVect (a,b) ;
s=s+norm(c) ;

tic

s=0;

for i=1:n
a=rand(3,1); b=rand(3,1);
c=prodVectC(a,b);
s=s+norm(c) ;

end

toc

disp('Ya he terminado')

Los resultados que se obtienen en la consola de MATLAB indican que la funcion en C es la mas
eficiente de las tres (aunque éste es un caso particularmente favorable para los compiladores just-in-
time de los ficheros *.m de MATLAB):

>> pruebaMEX

Elapsed time is 5.598874 seconds.
Elapsed time is 1.261900 seconds.
Elapsed time is 0.887502 seconds.
Ya he terminado

A continuacion se describe con mas generalidad la creacion de ficheros MEX. En la Figura 37, ins-
pirada en el Help de MATLAB, se ha querido mostrar como se realiza la comunicacion entre C y

MATLAB, cémo llegan los datos al fichero MEX, qué es lo que se hace con estos datos en mex-
Function y como se devuelven finalmente los resultados a MATLAB.

Aprenda Matlab 7.0 como si estuviera en Primero pagina 106

@ N e

MATLAB

. En mexFunction:
Las llamadas a las funciones MEX
se realizan de la misma forma que Se crean las variables C donde se almacenan los
a una funcién de Matlab. Por .| argumentos de entrada y de salida:

. . >
ejemplo. // inputs
double *a, *b;

[c]=prodVectC(a,b); // outputs

\\\» 4/// double *c;

Se crean los mxArrays (Matlab arrays) donde se
almacenan los valores de los argumentos de salida:

plhs[0] = mxCreateDoubleMatrix (3, 1, mxREAL);

Se asocian plhs[0], plhs[1],...con las variables puntero de
C creadas:

c = mxGetPr (plhs([0]);

Se extraen los valores de los argumentos de entrada con
la funcién mxGet:

MATLAB
a = mxGetPr (prhs[0]);
Los valores de retorno del fichero || P = mxGetPr(prhs(il);
MEX se asocian a los argumentos Finalmente se llama a la funcién programa en C:

de salida: plhs[0] se asocia a c.
prodVectC(a,b,c);

Figura 37. Esquema general de creacion de una funcion MEX.

Los ficheros MEX deben incluir la libreria "mex.h" donde esta declarada la funcion mexFunction,
cuya cabecera es la siguiente:

void mexFunction (int nlhs, mxArray *plhs[], int nrhs, const mxArray *prhs([])

Como ya se ha dicho, los argumentos plhs y prhs son vectores de punteros a los argumentos de
entrada (right hand side) y de salida (left hand side) del fichero MEX. Hay que sefialar que ambos
estan declarados de tipo mxArray*, es decir que son variables de MATLAB. En el ejemplo de la
funcién prodVectC, prhs es un array de dos elementos con dos punteros a dos variables mxArray
llamadas a y b, y plhs es un array de un elemento con un puntero NULL. Este puntero es NULL
porque los argumentos de salida no se crean hasta que se ejecuta la funcion C, que en este caso es la
funcién prodVectC. Por este motivo siempre hay que crear arrays para los valores de retorno o sali-
das y asignarlos a los componentes de plhs.

7.2.5. DEPURAR FICHEROS MEX EN C EN WINDOWS

Es interesante poder depurar funciones de cualquier tipo, para poder comprobar que funcionan tal
como se habia previsto. Para ello, al compilar se debe incluir la informacién para el debugger. Esto
se hace con la opcién -g.

mex -g filename.c

Se va a explicar para el caso de que se use un compilador de Microsoft. En caso de que se utilicen
otros compiladores se recomienda buscar la informacion en la documentacion de MATLAB.

Para depurar primero se abre una ventana de comandos de DOS y se escribe:

msdev filename.dll

Capitulo 7: Interfaces de Matlab con otros lenguajes pagina 107

Después en el entorno de Microsoft se entra en el menu Project, se selecciona Settings y dentro de
Settings en Debug. Por ultimo en el campo Executable for debug session hay que poner la direc-
cion de MATLAB.

Una vez que se han completado los pasos anteriores se puede abrir el cddigo fuente de la funcion y
poner break points en las lineas de cddigo que se desee. Se lanza dentro del entorno de Visual Stu-
dio el debug. Ahora es posible ejecutar el fichero MEX en MATLAB y usar el entorno de depura-
cioén de Microsoft.

7.2.6. DEPURAR FICHEROS MEX EN C EN UNIX

Es necesario arrancar MATLAB desde el debugger. Para ello hay que especificar el nombre del
debugger que se va a usar con la opcion -D al arrancar MATLAB.

Este ejemplo muestra como depurar la funcidon yprime.c en Solaris usando el debugger de UNIX
dbx.

unix> mex -g yprime.c
unix> matlab -Ddbx
<dbx> stop dlopen <matlab>/extern/examples/mex/yprime.mexsol

Una vez que el debugger carga MATLAB en memoria se puede empezar a usar utilizando el co-
mando run:

<dbx> run

Ahora se lanza el fichero MEX que se desea depurar. Antes de ejecutar el fichero MEX el programa
devuelve el control al debugger.

>> yprime(1,1:4)

<dbx> stop in 'yprime.mexsol' mexFunction
Puede que sea necesario informar al debugger de donde se ha cargado el fichero MEX o el nombre
del fichero, en cualquier caso MATLAB solicitara la informacion que necesite. En este momento se
esta listo para comenzar a depurar. Se puede editar el codigo fuente del fichero MEX y poner break-
points. Es conveniente poner un breakpoint al comienzo de la mexFunction. Para continuar después
de un breakpoint se emplea el siguiente comando.

<dbx> cont
Cuando el debugger esta parado en un breakpoint es posible utilizar todas las capacidades del de-

bugger para examinar variables, mostrar las posiciones de memoria a inspeccionar el valor de los
registros. Es conveniente estudiar las posibilidades que ofrece el debugger en su documentacion.

Aprenda Matlab 7.0 como si estuviera en Primero pagina 108

8. GRAFICOS BIDIMENSIONALES

A estas alturas, después de ver como funciona este programa, a nadie le puede resultar extrafio que
los graficos 2-D de MATLAB estén fundamentalmente orientados a la representacion grafica de
vectores (y matrices). En el caso més sencillo los argumentos basicos de la funcion plot van a ser
vectores. Cuando una matriz aparezca como argumento, se considerard como un conjunto de vecto-
res columna (en algunos casos también de vectores fila).

MATLAB utiliza un tipo especial de ventanas para realizar las operaciones graficas. Ciertos co-
mandos abren una ventana nueva y otros dibujan sobre la ventana activa, bien sustituyendo lo que
hubiera en ella, bien afiadiendo nuevos elementos graficos a un dibujo anterior. Todo esto se vera
con mas detalle en las siguientes secciones.

8.1. Funciones graficas 2D elementales

MATLAB dispone de cinco funciones basicas para crear graficos 2-D. Estas funciones se diferen-
cian principalmente por el tipo de escala que utilizan en los ejes de abscisas y de ordenadas. Estas
cuatro funciones son las siguientes:

plot() crea un grafico a partir de vectores y/o columnas de matrices, con escalas linea-
les sobre ambos ejes

plotyy() dibuja dos funciones con dos escalas diferentes para las ordenadas, una a la de-
recha y otra a la izquierda de la figura.

loglog() idem con escala logaritmica en ambos ejes

semilogx() idem con escala lineal en el eje de ordenadas y logaritmica en el eje de abscisas
semilogy() idem con escala lineal en el eje de abscisas y logaritmica en el eje de ordenadas

En lo sucesivo se hara referencia casi exclusiva a la primera de estas funciones (plot). Las demads se
pueden utilizar de un modo similar.

Existen ademas otras funciones orientadas a afiadir titulos al grafico, a cada uno de los e¢jes, a dibu-
jar una cuadricula auxiliar, a introducir texto, etc. Estas funciones son las siguientes:

title("titulo") afiade un titulo al dibujo

xlabel('tal') afiade una etiqueta al eje de abscisas. Con xlabel off desaparece

ylabel('cual') afiade una etiqueta al eje de ordenadas. Con ylabel off desaparece

text(x,y,'texto') introduce 'texto' en el lugar especificado por las coordenadas x ey. Six ey
son vectores, el texto se repite por cada par de elementos. Si texto es también
un vector de cadenas de texto de la misma dimension, cada elemento se escri-
be en las coordenadas correspondientes

gtext('texto') introduce texto con ayuda del raton: el cursor cambia de forma y se espera un
clic para introducir el texto en esa posicion

legend() define rétulos para las distintas lineas o ejes utilizados en la figura. Para mas
detalle, consultar el Help

grid activa la inclusion de una cuadricula en el dibujo. Con grid off desaparece la
cuadricula

Borrar texto (u otros elementos graficos) es un poco mas complicado; de hecho, hay que preverlo
de antemano. Para poder hacerlo hay que recuperar previamente el valor de retorno del comando
con el cual se ha creado. Después hay que llamar a la funcion delete con ese valor como argumento.
Considérese el siguiente ejemplo:

>> v = text(l,.0,'seno’')

v =
76.0001

Capitulo 8: Grdficos bidimensionales pagina 109

>> delete (v)

Los dos grupos de funciones anteriores no actiian de la misma forma. Asi, la funcion plot dibuja una
nueva figura en la ventana activa (en todo momento MATLAB tiene una ventana activa de entre
todos las ventanas graficas abiertas), o abre una nueva figura si no hay ninguna abierta, sustituyen-
do cualquier cosa que hubiera dibujada anteriormente en esa ventana. Para verlo, se comenzara
creando un par de vectores x e y con los que trabajar:

>> x=[-10:0.2:10]; y=sin(x);

Ahora se deben ejecutar los comandos siguientes (se comienza cerrando la ventana activa, para que
al crear la nueva ventana aparezca en primer plano):

>> close % se cierra la ventana grafica activa anterior
>> grid % se crea una ventana con una cuadricula
>> plot(x,y) % se dibuja la funcién seno borrando la cuadricula

Se puede observar la diferencia con la secuencia que sigue:

>> close
>> plot(x,y) % se crea una ventana y se dibuja la funcién seno
>> grid % se aflade la cuadricula sin borrar la funcién seno

En el primer caso MATLAB ha creado la cuadricula en una ventana nueva y luego la ha borrado al
ejecutar la funcion plot. En el segundo caso, primero ha dibujado la funcion y luego ha afiadido la
cuadricula. Esto es asi porque hay funciones como plot que por defecto crean una nueva figura, y
otras funciones como grid que se aplican a la ventana activa modificandola, y s6lo crean una venta-
na nueva cuando no existe ninguna ya creada. Més adelante se vera que con la funcién hold pueden
afiadirse graficos a una figura ya existente respetando su contenido.

8.1.1. FUNCION PLOT

Esta es la funcion clave de todos los graficos 2-D en MATLAB. Ya se ha dicho que el elemento
basico de los graficos bidimensionales es el vector. Se utilizan también cadenas de 1, 2 6 3 caracte-
res para indicar colores y tipos de linea. La funcion plot(), en sus diversas variantes, no hace otra
cosa que dibujar vectores. Un ejemplo muy sencillo de esta funcidn, en el que se le pasa un unico
vector como argumento, es el siguiente:

>> x=[1 3 2 4 5 3] $onr =0l
File Edit Yiew Insert Tools Deskiop Window Help £
X = hede hfadms|E0E|ea
1 3 2 4 5 3

>> plot(x) 3
El resultado de este comando es que se abre una -l |
ventana mostrando el grafico de la Figura 38. Por 4 l
defecto, los distintos puntos del grafico se unen con a5}]
una linea continua. También por defecto, el color Al

que se utiliza para la primera linea es el azul.

Cuando a la funcion plot() se le pasa un unico vec- 2l]
tor —real— como argumento, dicha funcion dibuja en
ordenadas el valor de los n elementos del vector
frente a los indices 1, 2, ... n del mismo en abscisas. 1 18 2 25 3 38 4 45 & &5 6
Mas adelante se vera que si el vector es complejo,
el funcionamiento es bastante diferente.

Figura 38. Grafico del vector x=[13 245 3].

En la pantalla de su ordenador se habré visto que MATLAB utiliza por defecto color blanco para el
fondo de la pantalla y otros colores mas oscuros para los ejes y las graficas.

Aprenda Matlab 7.0 como si estuviera en Primero pagina 110

Una segunda forma de utilizar la funcion plot() es con dos vectores como argumentos. En este caso
los elementos del segundo vector se representan en ordenadas frente a los valores del primero, que
se representan en abscisas. Véase por ejemplo coémo se puede dibujar un cuadrilatero de esta forma
(obsérvese que para dibujar un poligono cerrado el ultimo punto debe coincidir con el primero):

>> x=[1 6 5 2 1]; y=[1 0 4 3 1];
>> plot(x,y)

La funcién plot() permite también dibujar multiples curvas introduciendo varias parejas de vectores
como argumentos. En este caso, cada uno de los segundos vectores se dibujan en ordenadas como
funcion de los valores del primer vector de la pareja, que se representan en abscisas. Si el usuario no
decide otra cosa, para las sucesivas lineas se utilizan colores que son permutaciones ciclicas del
azul, verde, rojo, cyan, magenta, amarillo y negro. Obsérvese bien como se dibujan el seno y el
coseno en el siguiente ejemplo:

>> x=0:pi/25:6*pi;

>> y=sin(x); z=cos(x);

>> plot(x,y,x,2)

Ahora se va a ver lo que pasa con los vectores complejos. Si se pasan a plot() varios vectores com-
plejos como argumentos, MATLAB simplemente representa las partes reales y desprecia las partes
imaginarias. Sin embargo, un Unico argumento complejo hace que se represente la parte real en abs-
cisas, frente a la parte imaginaria en ordenadas. Véase el siguiente ejemplo. Para generar un vector
complejo se utilizara el resultado del calculo de valores propios de una matriz formada aleatoria-
mente:

>> plot(eig(rand(20,20)),'+")

donde se ha hecho uso de elementos que se veran en la siguiente seccion, respecto a dibujar con
distintos tipos de “markers” (en este caso con signos +), en vez de con linea continua, que es la op-
cion por defecto. En el comando anterior, el segundo argumento es un caracter que indica el tipo de
marker elegido. El comando anterior es equivalente a:

>> z=eig(rand(20,20));
>> plot(real(z) ,imag(z),'+"')

Como ya se ha dicho, si se incluye mas de un vector complejo como argumento, se ignoran las par-
tes imaginarias. Si se quiere dibujar varios vectores complejos, hay que separar explicitamente las
partes reales e imaginarias de cada vector, como se acaba de hacer en el ultimo ejemplo.

El comando plot puede utilizarse también con matrices como argumentos. Véanse algunos ejemplos
sencillos:

plot(A) dibuja una linea por cada columna de A en ordenadas, frente al indice de los
elementos en abscisas
plot(x,A) dibuja las columnas (o filas) de A en ordenadas frente al vector x en abscisas.

Las dimensiones de A y x deben ser coherentes: si la matriz A es cuadrada se
dibujan las columnas, pero si no lo es y la dimension de las filas coincide con
la de x, se dibujan las filas

plot(A,x) analogo al anterior, pero dibujando las columnas (o filas) de A en abscisas,
frente al valor de x en ordenadas
plot(A,B) dibuja las columnas de B en ordenadas frente a las columnas de A en absci-

sas, dos a dos. Las dimensiones deben coincidir

plot(A,B,C,D) analogo al anterior para cada par de matrices. Las dimensiones de cada par
deben coincidir, aunque pueden ser diferentes de las dimensiones de los de-
mas pares

Capitulo 8: Grdficos bidimensionales pagina 111

Se puede obtener una excelente y breve descripcion de la funcion plot() con el comando help plot o
helpwin plot. La descripcion que se acaba de presentar se completard en la siguiente seccion, en
donde se verd cémo elegir los colores y los tipos de linea.

8.1.2. ESTILOS DE LINEA Y MARCADORES EN LA FUNCION PLOT

En la seccion anterior se ha visto como la tarea fundamental de la funcidn plot() era dibujar los va-
lores de un vector en ordenadas, frente a los valores de otro vector en abscisas. En el caso general
esto exige que se pasen como argumentos un par de vectores. En realidad, el conjunto basico de
argumentos de esta funcion es una tripleta formada por dos vectores y una cadena de 1, 2 6 3 carac-
teres que indica el color y el tipo de linea o de marker. En la tabla siguiente se pueden observar las
distintas posibilidades.

Simbolo Color Simbolo Marcadores (markers)
y yellow . puntos
m magenta 0 circulos
c cyan X marcas en X
T red + marcas en +
g green * marcas en *
b blue s marcas cuadradas (square)
w white d marcas en diamante (diamond)
k black " triangulo apuntando arriba
v triangulo apuntando abajo
Simbolo Estilo de linea > triangulo apuntando a la dcha
- lineas continuas < tridngulo apuntando a la izda
lineas a puntos p estrella de 5 puntas
- lineas a barra-punto h estrella se seis puntas

- lineas a trazos

Tabla 1. Colores, markers y estilos de linea.

Cuando hay que dibujar varias lineas, por defecto se van cogiendo sucesivamente los colores de la
tabla comenzando por el azul, hacia arriba, y cuando se terminan se vuelve a empezar otra vez por
el azul. Si el fondo es blanco, este color no se utiliza para las lineas.

También es posible afiadir en la funcion plot algunos especificadores de linea que controlan el espe-
sor de la linea, el tamafio de los marcadores, etc. Considérese el siguiente ejemplo:

plot(x,y,"'-.rs', 'LineWidth', 4, 'MarkerEdgeColor','k',6 'MarkerFaceColor', 'g',...
'MarkerSize',10)

8.1.3. ANADIR LINEAS A UN GRAFICO YA EXISTENTE

Existe la posibilidad de afiadir lineas a un grafico ya existente, sin destruirlo o sin abrir una nueva
ventana. Se utilizan para ello los comandos hold on y hold off. El primero de ellos hace que los
graficos sucesivos respeten los que ya se han dibujado en la figura (es posible que haya que modifi-
car la escala de los ejes); el comando hold off deshace el efecto de hold on. El siguiente ejemplo
muestra como se anaden las graficas de x2 y x3 a la grafica de x previamente creada (cada una con
un tipo de linea diferente):

>> plot(x)
>> hold on

Aprenda Matlab 7.0 como si estuviera en Primero pagina 112

>> plot(x2,'--
>> plot(x3,'-.
>> hold off

")
")

8.1.4. COMANDO SUBPLOT

Una ventana grafica se puede dividir en m particiones horizontales y n verticales, con objeto de
representar multiples graficos en ella. Cada una de estas subventanas tiene sus propios ejes, aunque
otras propiedades son comunes a toda la figura. La forma general de este comando es:

>> subplot(m,n, i)

donde m y n son el numero de subdivisiones en filas y columnas, ¢ i es la subdivision que se con-
vierte en activa. Las subdivisiones se numeran consecutivamente empezando por las de la primera
fila, siguiendo por las de la segunda, etc. Por ejemplo, la siguiente secuencia de comandos genera
cuatro graficos en la misma ventana:

>> y=sin(x); z=cos(x); w=exp(-x*.1l).*y; v=y.*z;

>> subplot(2,2,1), plot(x,y)

>> subplot(2,2,2), plot(x,z)

>> subplot(2,2,3), plot(x,w)

>> subplot(2,2,4), plot(x,v)

Se puede practicar con este ejemplo afiadiendo titulos a cada subplot, asi como rétulos para los ejes.
Se puede intentar también cambiar los tipos de linea. Para volver a la opcidon por defecto basta te-
clear el comando:

>> subplot(1,1,1)

8.1.5. CONTROL DE LOS EJES: FUNCION AXIS()

También en este punto MATLAB tiene sus opciones por defecto, que en algunas ocasiones puede
interesar cambiar. El comando basico es el comando axis. Por defecto, MATLAB ajusta la escala de
cada uno de los ejes de modo que varie entre el minimo y el maximo valor de los vectores a repre-
sentar. Este es el llamado modo "auto", o modo automatico. Para definir de modo explicito los valo-
res maximo y minimo segun cada eje, se utiliza el comando:

axis([xmin, xmax, ymin, ymax])
mientras que :
axis ('auto')

devuelve el escalado de los ejes al valor por defecto o automatico. Otros posibles usos de este co-
mando son los siguientes:

v=axis devuelve un vector v con los valores [xmin, xmax, ymin, ymax | —1’
axis('yj") utiliza ejes de pantalla, con el origen en la esquina superior izda.
y el eje j en direccion vertical descendente)
axis('xy') utiliza ejes cartesianos normales, con el origen en la esquina in-
ferior izda. y el eje y vertical ascendente
axis('auto x') utiliza el escalado automatico s6lo en direccion x X
axis('auto xz') utiliza el escalado automatico so6lo en direcciones x, z -
axis(axis) mantiene los ejes en sus actuales valores, de cara a posibles nuevas grafi-
cas afiadidas con hold on
axis('tight") establece los mismos limites para los ejes que para los datos

axis('equal) el escalado es igual en ambos ejes
axis('square') la ventana sera cuadrada

Capitulo 8: Grdficos bidimensionales pagina 113

axis('image') la ventana tendra las proporciones de la imagen que se desea representar
i una i . u .

en ella (por ejemplo la de una imagen bitma e se desee importar) y el
escalado de los ejes serd coherente con dicha imagen

axis('normal') elimina las restricciones introducidas por 'equal’ y 'square’

axis('oft") elimina las etiquetas, los nimeros y los ejes

axis('on") restituye las etiquetas, los niimeros y los ejes

XLim, YLim permiten modificar selectivamente los valores méximo y minimo de los
ejes en las direcciones x € y.

Es posible también tener un control preciso sobre las marcas y los rotulos que aparecen en los ejes,
como por ejemplo en la forma siguiente:

x = -pi:.l:pi; y = sin(x);

plot(x,y)

set (gca, "XTick',-pi:pi/2:pi)

set (gca, 'XTickLabel', {'-pi', "-pi/2','0"', 'pi/2"', 'pi"})

Obsérvese como las propiedades se establecen sobre los ejes actuales, a los que se accede con la
funcion gea (get current axis).

8.1.6. FUNCION LINE()

La funcion line() permite dibujar una o mas lineas que unen los puntos cuyas coordenadas se pasan
como argumentos. Permite ademas especificar el color, grosor, tipo de trazo, marcador, etc. Es una
funcién de mas bajo nivel que la funcion plot(), pero ofrece una mayor flexibilidad. En su version
mas bdsica, para dibujar un segmento de color verde entre dos puntos, esta funcion se llamaria de la
siguiente manera:

>> line([xini, xend]', [yini, yend]', 'color', 'g')

Se puede también dibujar dos lineas a la vez utilizando la forma:
>> line([xinil xini2; xendl xend2], ([yinil yini2; yendl yend2]);
Finalmente, si cada columna de la matriz X contiene la coordenada x inicial y final de un punto, y lo

mismo las columnas de la matriz Y con las coordenadas y, la siguiente sentencia dibuja tantas lineas
como columnas tengan las matrices X e Y:

>> line ([X], [Y]);
Se pueden controlar las caracteristicas de la linea por medio de pares parametro/valor, como por
ejemplo:

>> line(x,y, 'Color','r', 'LineWidth', 4, 'MarkerSize',12, 'LineStyle','—"', '"Marker','*")

8.1.7. FUNCION FINDOBJ()

Si al dibujar una linea se recupera el valor de retorno de la funcion line y se almacena en una varia-
ble, més tarde es posible realizar un borrado selectivo de esa linea, como se ha comentado en el
apartado 8.1. Sin embargo, aunque no se haya tomado esta precacucion, también es posible recupe-
rar la referencia (handle) a un determinado elemento grafico de una figura por medio de la funcién
findobj (find object), a la que se pasan ciertas caracteristicas del elemento grafico que permiten su
localizacion.

Algunos posibles usos de esta funcion son los siguientes:
>> h=findobj

recupera la referencia del objeto base de la jerarquia grafica y de todos sus descendientes;

>> findobj ('color', 'k")

Aprenda Matlab 7.0 como si estuviera en Primero pagina 114

devuelve las referencias de todos los objetos de color negro;
>> set (findobj (gca, 'Type', 'line', 'Color', 'b'), 'Color','r', 'LineWidth', 3)

encuentra los objetos de tipo linea y de color azul, y cambia el color a rojo a la vez que establece
una anchura de linea de tres pixels.

8.2. Control de ventanas graficas: Funcion figure

Si se llama a la funcidn figure sin argumentos, se crea una nueva ventana grafica con el nlimero
consecutivo que le corresponda. El valor de retorno es dicho nimero.

Por otra parte, el comando figure(n) hace que la ventana n pase a ser la ventana o figura activa. Si
dicha ventana no existe, se crea una nueva ventana con el numero consecutivo que le corresponda
(que se puede obtener como valor de retorno del comando). La funcion close cierra la figura activa,
mientras que close(n) cierra la ventana o figura nimero n.

El comando clf elimina el contenido de la figura activa, es decir, la deja abierta pero vacia. La fun-
cion gef devuelve el nimero de la figura activa en ese momento.

Para practicar un poco con todo lo que se acaba de explicar, ejectitense las siguientes instrucciones
de MATLAB, observando con cuidado los efectos de cada una de ellas en la ventana activa. El co-
mando figure(gcf) (get current figure) permite hacer visible la ventana de graficos desde la ventana
de comandos.

>> x=[-4*pi:pi/20:4*pi];

>> plot(x,sin(x),'r',x,cos(x),'g")

>> title('Funcién seno(x) -en rojo- y funcidédn coseno(x) -en verde-')

>> xlabel ('angulo en radianes'), figure (gcf)

>> ylabel ('valor de la funcién trigonométrica'), figure (gcf)

>> axis([-12,12,-1.5,1.5]), figure(gcf)

>> axis('equal'), figure (gcf)

>> axis('normal'), figure (gcf)

>> axis('square'), figure (gcf)

>> axis('off'), figure(gcf)

>> axis('on'), figure(gcf)

>> axis('on'), grid, figure(gcf)

La funcién figure también admite que se fijen algunas de sus propiedades, como por ejemplo la
posicion y el tamafio con que aparecera en la pantalla. Por ejemplo, el comando:

>> figure('position',6 [left,botton, width,height])

abre una ventana cuya esquina inferior izquierda esta en el punto (left,botton) respecto a la esquina
inferior izquierda de la pantalla (en pixels), que tiene una anchura de width pixels y una altura de
height pixels.

Otra caracteristica muy importante de una ventana grafica es la de representar animaciones utilizan-
do la técnica del doble buffer. De modo sencillo, esta técnica se puede explicar diciendo que es
como si el ordenador tuviera dos paneles de dibujo: mientras uno estd a la vista, se estd dibujando
en el otro, y cuando el dibujo esta terminado este segundo panel se hace visible. El resultado del
doble buffer es que las animaciones y el movimiento se ven de modo perfecto, sin el parpadeo (flic-
ker) tan caracteristico cuando no se utiliza esta técnica.

Para dibujar con doble buffer en la ventana activa basta ejecutar los comandos siguientes (sin dema-
siadas explicaciones, que se pueden buscar en el Help de MATLAB):

>> set(gcf, 'DoubleBuffer’','on', 'Renderer', 'painters')

Capitulo 8: Grdficos bidimensionales pagina 115

8.3. Otras funciones graficas 2-D

Existen otras funciones graficas bidimensionales orientadas a generar otro tipo de graficos distintos
de los que produce la funcion plot() y sus andlogas. Algunas de estas funciones son las siguientes
(para mas informacion sobre cada una de ellas en particular, utilizar help nombre_funcion):

bar() crea diagramas de barras

barh() diagramas de barras horizontales

bar3() diagramas de barras con aspecto 3-D

bar3h() diagramas de barras horizontales con aspecto 3-D

pie() gréaficos con forma de “tarta”

pie3() graficos con forma de “tarta” y aspecto 3-D

area() similar plot(), pero rellenando en ordenadas de O a'y

stairs() funcién andloga a bar() sin lineas internas

errorbar() representa sobre una grafica —mediante barras— valores de errores

compass() dibuja los elementos de un vector complejo como un conjunto de vectores par-
tiendo de un origen comun

feather() dibuja los elementos de un vector complejo como un conjunto de vectores par-
tiendo de origenes uniformemente espaciados sobre el eje de abscisas

hist() dibuja histogramas de un vector

rose() histograma de angulos (en radianes)

quiver() dibujo de campos vectoriales como conjunto de vectores

Por ejemplo, genérese un vector de valores aleatorios entre 0 y 10, y ejecutense los comandos:

>> x=[rand(1,100)*10];

>> plot(x)

>> bar (x)

>> stairs(x)

>> hist (x)

>> hist(x,20)

>> alfa=(rand(1,20)-0.5)*2*pi;
>> rose(alfa)

8.3.1. FUNCION FPLOT

La funcion plot vista anteriormente dibuja vectores. Si se quiere dibujar una funcion, antes de ser
pasada a plot debe ser convertida en un vector de valores. Esto tiene algunos inconvenientes, por
ejemplo, el que "a priori" es dificil predecir en que zonas la funcion varia mas rapidamente y habria
por ello que reducir el espaciado entre los valores en el eje de abscisas.

La funcion fplot admite como argumento un nombre de funcion o un nombre de fichero *.m en el
cual esté definida una funcién de usuario. La funcion puede ser escalar (un tnico resultado por cada
valor de x) o vectorial. La forma general de esta funcién es la siguiente:

fplot('funcion', limites, 'cadena',6 tol)
donde:

'funcion' representa el nombre de la funcion o del fichero *.m entre apostrofos (pasado como
cadena de caracteres),

limites es un vector de 2 ¢ 4 elementos, cuyos valores son [xmin,xmax] o
[xmin,xmax,ymin,ymax],

'cadena' tiene el mismo significado que en plot y permite controlar el color, los markers y el
tipo de linea.

Aprenda Matlab 7.0 como si estuviera en Primero pagina 116

tol es la tolerancia de error relativo. El valor por defecto es 2e-03. EI méximo niimero
de valores en x es (1/tol)+1

Esta funcion puede utilizarse también en la forma:

[x,y]=fplot('funcion', limites, 'cadena',6K tol)

y en este caso se devuelven los vectores x e y, pero no se dibuja nada. El grafico puede obtenerse
con un comando posterior por medio de la funcion plot. Véase un ejemplo de utilizacion de esta
funcién. Se comienza creando un fichero llamado mifunc.m en el directorio G:\matlab que conten-
ga las lineas siguientes:

function y = mifunc(x)

v (:,1)=200*sin(x) ./x;
y(:,2)=x."2;

y a continuacion se ejecuta el comando:
>> fplot('mifunc(x)', [-20 20], 'g')

Obsérvese que la funcion mifunc devuelve una matriz con dos columnas, que constituyen las dos
graficas dibujadas. En este caso se ha utilizado para ellas el color verde.

8.3.2. FUNCION FILL PARA POLIGONOS

Esta es una funcién especial para dibujar poligonos planos, rellenandolos de un determinado color.
La forma general es la siguiente:

>> fill(x,y,c)

que dibuja un poligono definido por los vectores x e y, rellendndolo con el color especificado por c.
Si es necesario, el poligono se cierra uniendo el Gltimo vértice con el primero. Respecto al color:

B M R R |

— Si ¢ esun caracter de color ('1','g','d','c',)m",'y','w",'’k"), o un vector de valores [r g b], el poligono
se rellena de modo uniforme con el color especificado.

— Si ¢ es un vector de la misma dimension que x ey, sus elementos se trasforman de acuerdo
con un mapa de colores determinado, y el llenado del poligono —no uniforme en este caso— se
obtiene interpolando entre los colores de los vértices. Sobre este tema de los colores, se volve-
rd mas adelante con un cierto detenimiento.

Este comando puede utilizarse también con matrices:
>> fill(a,B,C)

donde A y B son matrices del mismo tamafio. En este caso se dibuja un poligono por cada par de
columnas de dichas matrices. C puede ser un vector fila de colores uniformes para cada poligono, o
una matriz del mismo tamafio que las anteriores para obtener colores de relleno por interpolacion. Si
una de las dos, o A o B, son un vector en vez de una matriz, se supone que ese vector se repite tan-
tas veces como sea necesario para dibujar tantos poligonos como columnas tiene la matriz. Considé-
rese un ejemplo sencillo de esta funcion:

>> x=[1 5 4 2]; y=[1 0 4 3];

>> fill(x,y,'r")

>> colormap (gray), fill(x,y,[1 0.5 0.8 0.7])

8.3.3. DIBUJO SIMPLIFICADO DE FUNCIONES: FUNCIONES EZPLOT() Y EZPOLAR()

La funcion ezplot es una funcion de dibujo simplificada, atil cuando se quiere obtener de forma
muy rapida la grafica de una funcién. En su forma mas simple, se puede llamar en la forma:

Capitulo 8: Grdficos bidimensionales pagina 117

>> ezplot (f);

donde f es el nombre o mejor el handle de una funcién. También puede ser una funcion inline. Por
defecto la funcion se dibuja en el intervalo [-2n < x < 2x]. Si se desea dibijar f en un intervalo dife-
rente, se puede escribir:

>> ezplot(f, [a,b]);
La funcién f puede ser una funcion implicita de dos variables f(x,y)=0. El intervalo por defecto

para cada variable es [2n < x < 2n]. También se puede definir un intervalo comin o especifico
para cada variable.

>> ezplot (f); % dibuja f(x,y)=0 en -2*pi<x<2*pi y -2*pi<y<2*pi
>> ezplot(f, [a,bl); % dibuja f(x,y)=0 en a<x<b y a<y> ezplot (f, [xmin,xmax,ymin,ymax]);

La funcidn ezplot puede dibujar también funciones paramétricas x(t), y(f), como por ejemplo:

>> ezplot('sin(t)', 'cos(t)"'); % dibuja para 0<t<2*pi
>> ezplot('sin(t)','cos(t)"', [tl,t2]); % dibuja para tl<t<t2
>> f = inline('cos (x)+2*sin(2*x)"'); ezplot(f);

La funcién ezpolar es similar a ezplot y se utiliza para dibujar en coordenadas polares.

8.4. Entrada de puntos con el raton

Se realiza mediante la funcion ginput, que permite introducir las coordenadas del punto sobre el que
esta el cursor, al clicar (o al pulsar una tecla). Algunas formas de utilizar esta funcidén son las si-
guientes:

[x,y] = ginput lee un nimero indefinido de puntos —cada vez que se clica o se pulsa una
tecla cualquiera— hasta que se termina pulsando la tecla intro

[x,y] = ginput(n) lee las coordenadas de n puntos

[x,y,bot] = ginput igual que el anterior, pero devuelve también un vector de enteros bot con
el codigo ASCII de Ia tecla pulsada o el numero del boton del raton (1, 2,
...) con el que se ha clicado

Como ejemplo de utilizacion de este comando, ejecutense las instrucciones siguientes en la ventana
de comandos de MATLAB para introducir un cuadrilatero arbitrario y dibujarlo de dos formas:

>> clf, [x,yl=ginput(4);
>> figure(gcf), plot(x,y,'w'), pause(5), fill(x,y,'r"')

donde se ha introducido el comando pause(5) que espera 5 segundos antes de continuar la ejecu-
cion. Este comando admite como argumento un tiempo con precision de centésimas de segundo.

8.5. Preparacion de peliculas o "'movies"

Para preparar pequefias peliculas o movies se pueden utilizar las funciones movie, moviein y get-
frame. Una pelicula se compone de varias imagenes, denominadas frames. La funcidén getframe
devuelve un vector columna con la informacion necesaria para reproducir la imagen que se acaba de
representar en la figura o ventana gréafica activa, por ejemplo con la funcién plot. El tamafio de este
vector columna depende del tamafo de la ventana, pero no de la complejidad del dibujo. La funcién
moviein(n) reserva memoria para almacenar n frames. La siguiente lista de comandos crearia una
pelicula de 17 imagenes o frames, que se almacenaran como las columnas de la matriz M:

Aprenda Matlab 7.0 como si estuviera en Primero

M = moviein (17);
x=[-2%pi:0.1:2*%pi]"';
for j=1:17
y=sin(x+j*pi/8);
plot(x,y):
M(:,j) = getframe;
end

pagina 118

Una vez creada la pelicula se puede representar el nimero de veces que se desee con el comando
movie. Por ejemplo, para representar 10 veces la pelicula anterior, a 15 imagenes por segundo,

habria que ejecutar el comando siguiente (los dos ultimos parametros son opcionales):

movie (M,10,15)

Los comandos moviein, getframe y movie tienen posibilidades adicionales para las que puede con-
sultarse el Help correspondiente. Hay que senalar que en MATLAB no es lo mismo un movie que
una animacion. Una animacion es simplemente una ventana grafica que va cambiando como con-

secuencia de los comandos que se van ejecutando.
Un movie es una animacion grabada o almacenada
en memoria previamente.

8.6. Impresion de las figuras en impresora laser

Es muy facil enviar a la impresora o a un fichero
una figura producida con MATLAB. La ;Error! No
se encuentra el origen de la referencia. muestra
las opciones que ofrece el menu File relacionadas
con la impresion de figuras: es posible establecer los
parametros de la pagina (Page Setup), de la impre-
sora (Print Setup), obtener una vision preliminar
(Print Preview) e imprimir (Print). Todos estos co-
mandos se utilizan en la forma habitual de las apli-
caciones de Windows.

La opcion Page Setup abre el cuadro de didlogo de
la Figura 40, que permite situar el dibujo sobre la
pagina, establecer los margenes, la orientacion del
papel, etc.

La impresion de una figura puede hacerse también
desde la linea de comandos. La forma general del
comando de impresion es la siguiente (si se omite el
nombre del fichero, la figura se envia a la impreso-
ra):

>> print —-device -options filename

Mediante el Help se puede obtener mas informacion
sobre el comando print.

Es posible también exportar a un fichero una figura
de MATLAB, por ejemplo para incluirla luego en
un documento de Word o en una presentacion de

<) Figure 1
Fle Edit View Insert Tools Deskiop ‘Window Help

=101 x|

Mew

B2E 08B O

Cpen... ChrH0
Clase Chrl+W

Save Chrl+3
Save fs...

Generake M-File, ..

Impork Data,..

Savs Warkspace As. .,
Preferences...

Export Setup. ..

Page Setup...

Print Sstup. ..

Print Preview. .

-06

-08

Figura 39. Comandos para imprimir figuras.

Page Setup - Figure 1

Size and Position | Paper I Lines and Text I Axes and Figure I

~hode
" Use screen size, centered on page

x|

@ Use rmanual size and position

~Manual size and position

Top: =10 =
Use defaults |
m =

Sampke

Left: ID.B 3_
Fill page |
Width: |20.30 3: =
Fix aspect ratio | o]
Height: 15.23 =
! I :I Center |
Units:lcentimeters vI
Help.. | Ok I Cancel |

Figura 40. Preparar la impresion con Page Setup.

Powerpoint. Para ello se utiliza el comando File/Save as de la ventana en la que aparece la figura.
El cuadro de didlogo que se abre ofrece distintos formatos graficos para guardar la imagen. Cabe
destacar la ausencia del formato *gif, muy utilizado en Internet; si esta presente sin embargo el

Capitulo 8: Grdficos bidimensionales

pagina 119

formato *.png, que se considera el sucesor natural del *gif. En todo caso la figura puede exportarse
con cualquier formato estandar y luego utilizar por ejemplo Paint Shop Pro para transformarla.

8.7. Las ventanas graficas de MATLAB

Anteriormente han aparecido en varias ocasiones las
ventanas graficas de MATLAB. Quizas sea el mo- *¥3 &
mento de hacer una breve recapitulaciéon sobre sus
posibilidades, que se han ido mejorando en las suce-
sivas versiones. La Figura 41 muestra los menus y las
barras de herramientas de las ventanas graficas de
MATLAB. Por defecto solo aparece la barra de
herramientas de la linea superior. Para hacer aparecer
también la segunda barra se ejecuta Camera Toolbar,

en el menu View.

En el menu Edit, ademas de los comandos referentes
a la copia de figuras, aparecen los comandos Figure
Properties, Axes Properties, Current Object Proper-
ties y Colormap, que abren paso a los correspondien-

) Figure 1

File Edit Y¥iew Insert Tools

=10l

Desktop window Help ~

Deda| k| ®E@E 08| e O

P

D%t L e |9 BD|LO

tes editores de propiedades. Los tres primeros se
muestran en las figuras siguientes (con la parte de la imagen con tamafo reducido).

o=

Fia dE Vew Jeat ook Deditop Wirdow Halp
tewa |k aama ¢ |08 o0

05}

Figare ame: ¥ Srow Figure Hunger rapectoe

Colorweg | D

Fpascoe 3+

. e Bt Setup.

o=

Pl D0 Ve damt Tock Dedifen Wndow Mak

tewa |k aadme ¢ 0B o0

05}

£} £ -+ 2

s | e | 7 e | e

LI Y

oie MxFxlz

X Gean [Lrase =] T hwvacss

I Bax

Figura 41. Menus y barras de las ventanas graficas.

o=

Pl D0 Ve damt Tock Deeiten Widow b

tewa |k aama ¢ |08 o0

L} £

L | #it Typee [Line =l

¥ Dats Soneee: [-

¥ Dl Bamem -

D Sonece:

_ renecr |
e =TI T]] Pt
A e come - 0 L]

Figura 42. Editor de propiedades de
Figure.

También es posible cambiar interactivamente
el mapa de colores utilizado en una figura
Con el
Edit/Colormap se abre el cuadro de didlogo

(ver apartado 9.2.1).

mostrado en la Figura 45.

El ment Edit de las ventanas graficas ofrece
también las opciones estandar de Windows,

Figura 43. Editor de propiedades de
Axes.

+) Colormap Editor

File Edit | Tools Help

Standard colormaps k

comando

Currert color i

Incl
CData:

permitiendo copiar, cortar y pegar los elemen-

tos seleccionados de la figura si esta activada

la opcion Plot Edit ([Ts).

Interpolating colorspace:l RGE |

[Immediste apply

El ment View permite hacer visibles u ocultar

las barras de herramientas Window Toolbar y

Camera Toolbar. Como se ha dicho, por de-

d red-orange-yellow-w

Figura 44. Editor de propiedades de
objeto (una linea).

=101 x|

auturan
bone
colorcube

cool

COpper

flag
gray

jek
lines W
pink

prism Color data trin: (0.0
spring

surmer

Caolor data max: |1.0

wga

Help

lglet=l} | A ppaly |

white:

Figura 45. Editor de mapa de colores.

Aprenda Matlab 7.0 como si estuviera en Primero pagina 120

fecto solo aparece la primera de ellas. Estas barras de herramientas disponen de numerosas opciones
para trabajar con ventanas que contengan graficos 2-D y 3-D. La mejor forma de aprender es probar
y acudir al Help cuando hay algo que no se entiende.

En menu Insert permite anadir elementos a la figura activa, por ejemplo rotulos, etiquetas, lineas,
texto, etc. Por su parte, el mena Tools permite realizar desde menu algunas de las operaciones tam-
bién disponibles en las barras de herramientas. Finalmente, el ment Help permite acceder a la ayu-
da concreta que hace referencia a las ventanas graficas.

Capitulo 9: Grdficos tridimensionales pagina 121

9. GRAFICOS TRIDIMENSIONALES

Quizas sea ésta una de las caracteristicas de MATLAB que mas admiracion despierta entre los
usuarios no técnicos (cualquier alumno de ingenieria sabe que hay ciertas operaciones algebraicas —
como la descomposicion de valores singulares, sin ir mas lejos— que tienen dificultades muy supe-
riores, aunque "luzcan" menos).

9.1. Tipos de funciones graficas tridimensionales

MATLAB tiene posibilidades de realizar varios tipos de graficos 3D. Para darse una idea de ello, lo
mejor es verlo en la pantalla cuanto antes, aunque haya que dejar las explicaciones detalladas para
un poco mas adelante.

La primera forma de grafico 3D es la funcion plot3, que es el analogo tridimensional de la funcion
plot. Esta funcion dibuja puntos cuyas coordenadas estan contenidas en 3 vectores, bien uniéndolos
mediante una linea continua (defecto), bien mediante markers. Aseglirese de que no hay ninguna
ventana grafica abierta y ejecute el siguiente comando que dibuja una linea espiral en color rojo:

>> fi=[0:pi/20:6*pi]; plot3(cos(fi) ,sin(fi) , fi,'r'), grid

Ahora se vera como se representa una funcion de dos variables. Para ello se va a definir una funcién
de este tipo en un fichero llamado test3d.m. La féormula serd la siguiente:

X

%3 _yS)e—xz—yz _le—(erl)z—yz
5 3

z=3(1—x)e "0 10[

El fichero test3d.m debe contener las lineas siguientes:
function z=test3d(x,y)
z = 3*%(1l-x).72.%*exp(-(x.%2) - (y+1)."2)
- 10*(x/5 - x.*3 - y.”5).*exp(-x."2-y."2)
- 1/3%exp (- (x+1) .2 - y."2);

Ahora, ejecttese la siguiente lista de comandos gy =51
(directamente, o mejor creando un fichero lla- T ;‘hg"gr‘t e D{;%ffg?wm”g‘ o =
mado fest3dMain.m que los contenga): -

>> x=[-3:0.4:3]; y=x;

>> close

>> subplot(2,2,1)

>> figure (gcf) ,fi=[0:pi/20:6*pi] ;
>> plot3(cos(fi) ,sin(fi) fi,'r")
>> grid

>> [X,Y]=meshgrid(x,y)

>> Z=test3d (X,Y);

>> subplot(2,2,2)

>> figure(gcf), mesh(Z)

>> subplot(2,2,3)

>> figure(gcf), surf(Z)

>> subplot(2,2,4)

>> figure(gcf), contour3(Z,16)

En la figura resultante (Figura 46) aparece una Figura 46. Graficos 3D realizados con MATLAB.
buena muestra de algunas de las posibilidades

gréficas tridimensionales de MATLAB. En las proximas secciones se realizard una explicacion mas
detallada de qué se ha hecho y como se ha hecho.

Aprenda Matlab 7.0 como si estuviera en Primero pagina 122

9.1.1. DIBUJO SIMPLIFICADO DE FUNCIONES 3-D: FUNCIONES EZPLOT3(), EZSURF(), ETC.

Existen también algunas funciones simplificadas para el dibujo 3-D similares a la funcion ezplot
vista en el Apartado 8.3.3, en la pagina 116.

Asi la funcion ezplot3 dibuja lineas paramétricas tridimensionales en la forma x(¢), y(¢) y z(¢). Por
defecto se utiliza el intervalo 0 < ¢ < 2*pi. Considérense las siguientes posibilidades:
>> ezplot3(x,v,2z)

>> ezplot3(x,vy,z

[tl,t2]);
>> ezplot3(x,v,z, [

14
,[t1l,t2],"animate'); % dibuja la curva progresivamente

En las sentencias anteriores x, y, y z pueden ser funciones andnimas, handles a funciones, funciones
inline o expresiones definidas como cadena de caracteres. Los ficheros *.m y las funciones inline

deben escribirse de tal forma que admitan vectores de valores como argumentos (vectorizados).

Otra funcion de dibujo 3-D répido es ezsurf. Esta funcién utiliza la funccion surf para realizar un
dibujo 3-D de una funcion f{x,y). Por defecto se utilizan los intervalos —2*pi < x, y < 2*pi. La fun-
cion f'se puede definir por medio de una expresion en la que aparezcan x e y definida por medio de
una cadena de caracteres, con una funcion convencional, o con funciones andénimas u online. A con-
tinuacion se dan algunas posibles formas de exta funcién:

>> ezsurf (f);

>> ezsurf (£, [a,b]);
>> ezsurf (f, [xmin,xmax,ymin,ymax]);

La funcion ezsurf permite también dibujar superficies paramétricas 3-D, por ejmplo en las formas
siguientes, con parametros sy f:

>> ezsurf(x,y,z); % por defecto -2*pi < s,t < 2*pi
>> ezsurf(x,vy,z, [a,bl);
>> ezsurf (x,vy,z, [smin,smax,tmin,tmax]);

Con un ultimo parametro entero N se puede controlar la densidad del mallado con el que se dibuja.
Por defecto N=60. Con el argumento 'circ' se dibuja en un dominio circular. A continuacion se in-
cluyen algunos ejemplos tomados de la ayuda de MATLAB:

>> ezsurf('s*cos(t)','s*sin(t)"','t")
>> ezsurf ('s*cos(t)','s*sin(t)"','s"'")
>> ezsurf ('exp(-s)*cos(t)', 'exp(-s)*sin(t)','t',[0,8,0,4*pi])

Otras funciones simplificadas para dibujo 3-D son ezcontour, ezcontourf, ezmesh, ezsurfc y ez-
meshc. Para mas informacion consultar el Help de MATLAB.

9.1.2. DIBUJO DE LINEAS: FUNCION PLOT3

La funcion plot3 es analoga a su homologa bidimensional plot. Su forma mas sencilla es:
>> plot3(x,y,z)
que dibuja una linea que une los puntos (x(1), ¥(1), z(1)), (x(2), ¥(2), z(2)), etc. y la proyecta sobre

un plano para poderla representar en la pantalla. Al igual que en el caso plano, se puede incluir una
cadena de 1, 2 6 3 caracteres para determinar el color, los markers, y el tipo de linea:

>> plot3(x,y,2z,s)

También se pueden utilizar tres matrices X, Y y Z del mismo tamano:
>> plot3(X,Y,2)

en cuyo caso se dibujan tantas lineas como columnas tienen estas 3 matrices, cada una de las cuales
esta definida por las 3 columnas homdlogas de dichas matrices.

Capitulo 9: Grdficos tridimensionales pagina 123

A continuacién se va a realizar un ejemplo sencillo consistente en dibujar un cubo. Para ello se
creara un fichero llamado cubo.m que contenga las aristas correspondientes, definidas mediante los
vértices del cubo como una linea poligonal continua (obsérvese que algunas aristas se dibujan dos
veces). El fichero cubo.m define una matriz A cuyas columnas son las coordenadas de los vértices,
y cuyas filas son las coordenadas x, y y z de los mismos. A continuacion incluye la llamada a la
funcién plot3:

% fichero cubo.m
close all
A=[01 1 000
001100

001
)

oo
R RR
~ oo
orpR
R RR
=)

0
1
000 0
plot3(A(1,

1;

10110
00011
11111
(2,:) (

-~ roOoR
—“—ooRr

",A(2,:)",A(3,:

9.1.3. DIBUJO DE MALLADOS: FUNCIONES MESHGRID, MESHY SURF

Ahora se vera con detalle como se puede dibujar una funcion de dos variables (z=f(x,y)) sobre un
dominio rectangular. Se verd que también se pueden dibujar los elementos de una matriz como fun-
cion de los dos indices.

Sean x e y dos vectores que contienen las coordenadas en una y otra direccion de la reticula (grid)
sobre la que se va a dibujar la funcién. Después hay que crear dos matrices X (cuyas filas son co-
pias de x) e Y (cuyas columnas son copias de y). Estas matrices se crean con la funcion meshgrid.
Estas matrices representan respectivamente las coordenadas x e y de todos los puntos de la reticula.
La matriz de valores Z se calcula a partir de las matrices de coordenadas X e Y. Finalmente hay que
dibujar esta matriz Z con la funcién mesh, cuyos elementos son funcidon elemento a elemento de los
elementos de X e Y. Véase como ejemplo el dibujo de la funcion sen(r)/r (siendo r=sqr(x’+y°);
para evitar dividir por 0 se suma al denominador el nimero pequefio eps). Para distinguirla de la
funcion test3d anterior se utilizard u y v en lugar de x e y. Créese un fichero llamado sombrero.m
que contenga las siguientes lineas:

close all

u=-8:0.5:8; v=u;

[U,V]=meshgrid(u,v) ;

R=sqrt (U.*2+V."2) +eps;

W=sin(R) ./R;

mesh (W)

Ejecutando este fichero se obtiene el grafico mostrado en la Figura 47.

Se habra podido comprobar que la funcion mesh dibuja en perspectiva una funciéon en base a una
reticula de lineas de colores, rodeando cuadrilateros del color de fondo, con eliminacion de lineas
ocultas. Mas adelante se vera como controlar estos colores que aparecen. Baste decir por ahora que
el color depende del valor z de la funcion. Ejecttese ahora el comando:

>> surf (W)
y obsérvese la diferencia en la Figura 48. En vez de lineas aparece ahora una superficie faceteada,

también con eliminacion de lineas ocultas. El color de las facetas depende también del valor de la
funcion.

Aprenda Matlab 7.0 como si estuviera en Primero pagina 124

) Figure 1 =10] x| <) Figure 2 =10] x|
,

File Edit “ew Insert Tools Deskiop ‘Window Help £ File Edit “iew Insert Tools Deskiop ‘Window Help

DEE&E k| RQT®|w 08 00 DEE&E k| RQANB|w 08 00

Figura 47. Figura 3D de la funcion “sombrero”. Figura 48. Funcion “sombrero” con facetas.

Como un segundo ejemplo, se va a volver a dibujar la funcion picoes (la correspondiente al fichero
test3d.m visto previamente). Créese ahora el fichero picos.m con las siguientes sentencias:
x=[-3:0.2:3];
y=x;
[X,Y]=meshgrid(x,y) ;
Z=test3d (X,Y) ;
figure (gcf), mesh(Z), pause(5), surf(Z)

Es necesario poner la instruccion pause —que espera 5 segundos— para que se puedan ver las dos
formas de representar la funcién Z (si no, s6lo se veria la segunda). Una vez creado este fichero,
tecléese picos en la linea de comandos y obsérvese el resultado. Mdas adelante se vera también coémo
controlar el punto de vista en estos graficos en perspectiva.

9.1.4. DIBUJO DE LINEAS DE CONTORNO: FUNCIONES CONTOUR Y CONTOUR3

Una forma distinta de representar funciones tridimensionales es por medio de isolineas o curvas de
nivel. A continuacion se vera como se puede utilizar estas representaciones con las matrices de da-
tos Z y W que se han calculado previamente:

>> contour (Z,20)

>> contour3(Z,20)

>> contour (W, 20)
>> contour3 (W, 20)

donde "20" representa el nimero de lineas de nivel. Si no se pone se utiliza un niimero por defecto.
Otras posibles formas de estas funciones son las siguientes:

contour(Z, val) siendo val un vector de valores para las isolineas a dibujar
contour(u,v,W,20) se utilizan u y v para dar valores a los ejes de coordenadas
contour(Z,20,'r--") se puede especificar el tipo de linea como en la funcion plot
contourf(Z, val) analoga a contour(), pero rellenando el espacio entre lineas

9.2. Utilizacion del color en graficos 3-D

En los dibujos realizados hasta ahora, se ha visto que el resultado adoptaba determinados colores,
pero todavia no se ha explicado de donde han salido. Ahora se vera qué sistema utiliza MATLAB
para determinar los colores.

Capitulo 9: Grdficos tridimensionales pagina 125

9.2.1. MAPAS DE COLORES

Un mapa de colores se define como una matriz de tres columnas, cada una de las cuales contiene un
valor entre 0 y 1, que representa la intensidad de uno de los colores fundamentales: R (red o rojo),
G (green o verde) y B (blue o azul).

La longitud por defecto de los mapas de colores de MATLAB es 64, es decir, cada mapa de color
contiene 64 colores. Esta longitud puede modificarse como luego se vera.

Algunos mapas de colores estan predefinidos en MATLAB. Buscando colormap en Help se obtiene
—entre otra informacion— la lista de los siguientes mapas de colores:

autumn varies smoothly from red, through orange, to yellow.

bone is a grayscale colormap with a higher value for the blue component.

colorcube contains as many regularly spaced colors in RGB colorspace as possible, while attempting to pro-
vide more steps of gray, pure red, pure green, and pure blue.

cool consists of colors that are shades of cyan and magenta.

copper varies smoothly from black to bright copper.

flag consists of the colors red, white, blue, and black.

gray returns a linear grayscale colormap.

hot varies smoothly from black, through shades of red, orange, and yellow, to white.

hsv varies the hue component of the hue-saturation-value color model. The colors begin with red, pass
through yellow, green, cyan, blue, magenta, and return to red.

jet ranges from blue to red, and passes through the colors cyan, yellow, and orange. It is a variation of
the hsv colormap.

lines colormap of colors specified by the Axes ColorOrder property and a shade of gray.

pink contains pastel shades of pink.

prism repeats the six colors red, orange, yellow, green, blue, and violet.

spring consists of colors that are shades of magenta and yellow.

summer consists of colors that are shades of green and yellow.

white is an all white monochrome colormap.

winter consists of colors that are shades of blue and green.

El colormap por defecto es jet. Para visualizar estos mapas de colores, cambiando al mismo tiempo
su longitud, se pueden utilizar los siguientes comandos en la Command Window:

>> colormap (hot(128))
>> pcolor([1:129;1:129]")

donde la funcién pcolor permite visualizar por medio de colores la magnitud de los elementos de
una matriz (en realidad representa colores de “celdas”, para lo que necesita que la matriz tenga una
fila y columna més de las necesarias; ésa es la razon de que en el ejemplo anterior a la funciéon pco-
lor se le pasen 129 filas y 2 columnas).

Si se desea imprimir una figura en una impresora laser en blanco y negro, puede utilizarse el mapa
de color gray. En el siguiente apartado se explica con mas detalle el dibujo en "pseudocolor" (pco-
lor, abreviadamente).

El comando colormap actta sobre la figura activa, cambiando sus colores. Si no hay ninguna figura
activa, sustituye al mapa de color anterior para las siguientes figuras que se vayan a dibujar.

9.2.2. IMAGENES Y GRAFICOS EN PSEUDOCOLOR. FUNCION CAXIS

Cuando se desea dibujar una figura con un determinado mapa de colores se establece una corres-
pondencia (o un mapping) entre los valores de la funcion y los colores del mapa de colores. Esto
hace que los valores pequefios se dibujen con los colores bajos del mapa, mientras que los valores
grandes se dibujan con los colores altos.

La funcién pcolor es -en cierta forma- equivalente a la funcidon surf con el punto de vista situado
perpendicularmente al dibujo. Un ejemplo interesante de uso de la funcion pcolor es el siguiente: se

Aprenda Matlab 7.0 como si estuviera en Primero pagina 126

genera una matriz A de tamafio 100x100 con valores aleatorios entre 0 y 1. La funcion pcolor(A)
dibuja en color los elementos de la matriz A, mientras que la funcion pcolor(inv(A)) dibuja los co-
lores correspondientes a los elementos de la matriz inversa. Se puede observar que los colores de la
matriz inversa son mucho mas uniformes que los de la matriz original. Los comandos son los si-
guientes:

>> A=rand (100,100) ; colormap (hot); pcolor(A); pause(5), pcolor(inv(A)) ;

donde el comando pause(5) simplemente introduce un pausa de 5 seg en la ejecucion. Al ejecutar
todos los comandos en la misma linea es necesario poner pause pues si no dibuja directamente la
inversa sin pasar por la matriz inicial.

Si todavia se conservan las matrices Z y W que se han definido previamente, se pueden hacer algu-
nas pruebas cambiando el mapa de colores.

La funcidn caxis permite ajustar manualmente la escala de colores. Su forma general es:

caxis([cmin, cmax])

donde emin y cmax son los valores numéricos a los que se desea ajustar el minimo y el maximo
valor de la escala de colores.

9.2.3. DIBUJO DE SUPERFICIES FACETEADAS

La funcion surf tiene diversas posibilidades referentes a la forma en que son representadas las face-
tas o poligonos coloreados. Las tres posibilidades son las siguientes:

shading flat determina sombreado con color constante para cada poligono. Este som-
breado se llama plano o flat.

shading interp establece que el sombreado se calcularé por interpolacion de colores entre
los vértices de cada faceta. Se llama también sombreado de Gouraud

shading faceted consiste en sombreado constante con lineas negras superpuestas. Esta es la
opcion por defecto

Edite el fichero picos.m de forma que aparezcan menos facetas y mas grandes. Se puede probar con
ese fichero, eliminando la funcién mesh, los distintos tipos de sombreado o shading que se acaban
de citar. Para obtener el efecto deseado, basta poner la sentencia shading a continuacion de la sen-
tencia surf.

9.2.4. OTRAS FORMAS DE LAS FUNCIONES MESHY SURF

Por defecto, las funciones mesh y surf atribuyen color a los bordes y facetas en funcion de los valo-
res de la funcién, es decir en funcion de los valores de la matriz Z. Esta no es sin embargo la unica
posibilidad. En las siguientes funciones, las dos matrices argumento Z y C tienen el mismo tamafio:

mesh (Z,C)
surf (Z,C)

En las figuras resultantes, mientras se dibujan los valores de Z, los colores se obtienen de C. Un
caso tipico es aquél en el que se quiere que los colores dependan de la curvatura de la superficie (y
no de su valor). MATLAB dispone de la funcion del2, que aproxima la curvatura por diferencias
finitas con el promedio de los 4 elementos contiguos, resultando asi una matriz proporcional a la
curvatura. Obsérvese el efecto de esta forma de la funcion surf en el siguiente ejemplo (si todavia se
tiene la matriz Z formada a partir de test3d, utilicese. Si no se conserva, vuélvase a calcular):

>> C=del2(Z) ;
>> close, surf(Z,C)

Capitulo 9: Grdficos tridimensionales pagina 127

9.2.5. FORMAS PARAMETRICAS DE LAS FUNCIONES MESH, SURF'Y PCOLOR
Existen unas formas mas generales de las funciones mesh, surf'y pcolor. Son las siguientes (se pre-
sentan principalmente con la funciones mesh y surf). La funcién:
mesh(x,y,Z,C)
dibuja una superficie cuyos puntos tienen como coordenadas (x(j), y(i), Z(i,j)) y como color C(ij).
Obsérvese que x varia con el indice de columnas e y con el de filas. Analogamente, la funcion:
mesh(X,Y,Z,C)
dibuja una superficie cuyos puntos tienen como coordenadas (X(i,j), Y(i,j), Z(i,j)) y como color
C(i,j). Las cuatro matrices deben ser del mismo tamafio. Si todavia estan disponibles las matrices

calculadas con el fichero picos.m, ejecutese el siguiente comando y obsérvese que se obtiene el
mismo resultado que anteriormente:

>> close, surf(X,Y,Z), pause(5), mesh(X,Y,Z)
(Cuadl es la ventaja de estas nuevas formas de las funciones ya conocidas? La principal es que admi-
ten mas variedad en la forma de representar la cuadricula en el plano (x-y). La primera forma admi-

te vectores X e y con puntos desigualmente espaciados, y la segunda admite conjuntos de puntos
muy generales, incluso los provenientes de coordenadas cilindricas y esféricas.

9.2.6. OTRAS FUNCIONES GRAFICAS 3D

Las siguientes funciones se derivan directamente de las anteriores, pero afiaden algiin pequefio deta-
lle y/o funcionalidad:

surfc combinacion de surf, y contour en z=0

trisurf similar a surf, dibuja una superficie 3-D a partir de los valores de una funciéon en
una malla de triangulos.

meshz mesh con plano de referencia en el valor minimo y una especie de “cortina” en los

bordes del dominio de la funcién
trimesh similar a mesh, dibuja una superficie 3-D a partir de los valores de una funcion en
una malla de tridngulos.

surfl para controlar la iluminacion determinando la posicion e intensidad de un foco de
luz.
light crea un foco de luz en los ejes actuales capaz de actuar sobre superficies 3-D. Se

le deben pasar como argumentos el color, el estilo (luz local o en el infinito) y la
posicion. Son muy importantes las propiedades de los objetos iluminados patch y
surface; consultarlas por medio del Help cuando se vayan a utilizar.

colorbar afiade el mapa de colores activo a la figura, redimensionando los ejes para hacerle
un lugar. Se puede colocar horizontal o verticalmente.

sphere dibuja una esfera 3-D de radio unidad. Por defecto se utiliza un faceteado de 20
(20 meridianos y 20 paralelos). Este nimero se puede cambiar. Es posible recoger
las coordenadas como valor de retorno y multiplicarlas por un factor de escala.

cylinder dibuja una superficie cilindrica de radio 1 y altura 1, con 20 facetas laterales. Este
nimero se puede cambiar, como segundo argumento. El primer argumento puede
ser un vector que indica como varia el radio en funcién de la altura del cilindro.
También es posible recoger las coordenadas como valor de retorno y multiplicar-
las por un factor de escala.

Se pueden probar estas funciones con los datos de que se dispone. Utilicese el help para ello.

Aprenda Matlab 7.0 como si estuviera en Primero pagina 128

9.2.7. ELEMENTOS GENERALES: EJES, PUNTOS DE VISTA, LINEAS OCULTAS, ...

Las funciones surf'y mesh dibujan funciones tridimensionales en perspectiva. La localizacion del
punto de vista o direccion de observacion se puede hacer mediante la funcion view, que tiene la si-
guiente forma:

view(azimut, elev)
donde azimut es el angulo de rotacidon de un plano horizontal, medido sobre el eje z a partir del eje
x en sentido antihorario, y elev es el angulo de elevacion respecto al plano (x-y). Ambos angulos se
miden en grados, y pueden tomar valores positivos y negativos (sus valores por defecto son -37.5 y

30). También se puede definir la direccion del punto de vista mediante las tres coordenadas carte-
sianas de un vector (sélo se tiene en cuenta la direccion):

view([xd,yd,zd])

En los gréficos tridimensionales existen funciones para controlar los ejes, por ejemplo:
axis ([xmin,xmax,ymin,ymax,zmin, zmax])
axis([xmin xmax ymin ymax zmin zmax cmin cmax])

Esta tltima funcion es una forma combinada de la funcion axis y de la funcidn caxis, explicada en
el apartado 9.2.2.

También se pueden utilizar las funciones siguientes: xlabel, ylabel, zlabel, xlim, ylim, zlim,
axis('auto’), axis(axis), ctc.

Las funciones mesh y surf disponen de un algoritmo de eliminacion de lineas ocultas (los poligo-
nos o facetas, no dejan ver las lineas que estdn detras). El comando hidden activa y desactiva la
eliminacion de lineas ocultas.

En el dibujo de funciones tridimensionales, a veces también son utiles los NaNs. Cuando una parte
de los elementos de la matriz de valores Z son NaNs, esa parte de la superficie no se dibuja, permi-
tiendo ver el resto de la superficie.

